Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Ankur R. Desai x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Abstract
Sexual harassment in field settings brings unique challenges for prevention and response, as field research occurs outside “typical” workplaces, often in remote locations that create additional safety concerns and new team dynamics. We report on a project that has 1) trained field project participants to recognize, report, and confront sexual harassment, and 2) investigated the perceptions, attitudes, and experiences of field researchers regarding sexual harassment. Precampaign surveys from four major, multi-institutional, domestic, and international field projects indicate that the majority of sexual harassment reported prior to the field campaigns was hostile work environment harassment, and women were more likely to be the recipients, on average reporting two to three incidents each. The majority of those disclosing harassment indicated that they coped with past experiences by avoiding their harasser or downplaying incidents. Of the incidences reported (47) in postcampaign surveys of the four field teams, all fell under the category of hostile work environment and included incidents of verbal, visual, and physical harassment. Women’s harassment experiences were perpetrated by men 100% of the time, and the majority of the perpetrators were in more senior positions than the victims. Men’s harassment experiences were perpetrated by a mix of women and men, and the majority came from those at the same position of seniority. Postproject surveys indicate that the training programs (taking place before the field projects) helped participants come away with more positive than negative emotions and perceptions of the training, the leadership, and their overall experiences on the field campaign.
Abstract
Sexual harassment in field settings brings unique challenges for prevention and response, as field research occurs outside “typical” workplaces, often in remote locations that create additional safety concerns and new team dynamics. We report on a project that has 1) trained field project participants to recognize, report, and confront sexual harassment, and 2) investigated the perceptions, attitudes, and experiences of field researchers regarding sexual harassment. Precampaign surveys from four major, multi-institutional, domestic, and international field projects indicate that the majority of sexual harassment reported prior to the field campaigns was hostile work environment harassment, and women were more likely to be the recipients, on average reporting two to three incidents each. The majority of those disclosing harassment indicated that they coped with past experiences by avoiding their harasser or downplaying incidents. Of the incidences reported (47) in postcampaign surveys of the four field teams, all fell under the category of hostile work environment and included incidents of verbal, visual, and physical harassment. Women’s harassment experiences were perpetrated by men 100% of the time, and the majority of the perpetrators were in more senior positions than the victims. Men’s harassment experiences were perpetrated by a mix of women and men, and the majority came from those at the same position of seniority. Postproject surveys indicate that the training programs (taking place before the field projects) helped participants come away with more positive than negative emotions and perceptions of the training, the leadership, and their overall experiences on the field campaign.
Abstract
The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.
Abstract
The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.
Abstract
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m–2 yr–1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average ±1.6 g C m–2 yr–1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.
Abstract
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m–2 yr–1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average ±1.6 g C m–2 yr–1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.