Search Results
You are looking at 1 - 10 of 45 items for :
- Author or Editor: Anthony Del Genio x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
The role of midlatitude baroclinic cyclones in maintaining the extratropical winter distribution of water vapor in an operational global climate model is investigated. A cyclone identification and tracking algorithm is used to compare the frequency of occurrence, propagation characteristics, and composite structure of 10 winters of storms in the Goddard Institute for Space Studies general circulation model (GCM) and in two reanalysis products. Cyclones are the major dynamical source of water vapor over the extratropical oceans in the reanalyses. The GCM produces fewer, generally weaker, and slower-moving cyclones than the reanalyses and is especially deficient in storms associated with secondary cyclogenesis. Composite fields show that GCM cyclones are shallower and drier aloft than those in the reanalyses and that their vertical structure is less tilted in the frontal region because of the GCM’s weaker ageostrophic circulation. This is consistent with the GCM’s underprediction of midlatitude cirrus. The GCM deficiencies do not appear to be primarily due to parameterization errors; the model is too dry despite producing less storm precipitation than is present in the reanalyses and in an experimental satellite precipitation dataset, and the weakness and shallow structure of GCM cyclones is already present at storm onset. These shortcomings may be common to most climate GCMs that do not resolve the mesoscale structure of frontal zones, and this may account for some universal problems in climate GCM midlatitude cloud properties.
Abstract
The role of midlatitude baroclinic cyclones in maintaining the extratropical winter distribution of water vapor in an operational global climate model is investigated. A cyclone identification and tracking algorithm is used to compare the frequency of occurrence, propagation characteristics, and composite structure of 10 winters of storms in the Goddard Institute for Space Studies general circulation model (GCM) and in two reanalysis products. Cyclones are the major dynamical source of water vapor over the extratropical oceans in the reanalyses. The GCM produces fewer, generally weaker, and slower-moving cyclones than the reanalyses and is especially deficient in storms associated with secondary cyclogenesis. Composite fields show that GCM cyclones are shallower and drier aloft than those in the reanalyses and that their vertical structure is less tilted in the frontal region because of the GCM’s weaker ageostrophic circulation. This is consistent with the GCM’s underprediction of midlatitude cirrus. The GCM deficiencies do not appear to be primarily due to parameterization errors; the model is too dry despite producing less storm precipitation than is present in the reanalyses and in an experimental satellite precipitation dataset, and the weakness and shallow structure of GCM cyclones is already present at storm onset. These shortcomings may be common to most climate GCMs that do not resolve the mesoscale structure of frontal zones, and this may account for some universal problems in climate GCM midlatitude cloud properties.
Abstract
In continental convective environments, general circulation models typically produce a diurnal cycle of rainfall that peaks close to the noon maximum of insolation, hours earlier than the observed peak. One possible reason is insufficient sensitivity of their cumulus parameterizations to the state of the environment due to weak entrainment. The Weather Research and Forecasting (WRF) model, run at cloud-resolving (600 and 125 m) resolution, is used to study the diurnal transition from shallow to deep convection during the monsoon break period of the Tropical Warm Pool–International Cloud Experiment. The WRF model develops a transition from shallow to deep convection in isolated events by 1430–1500 local time. The inferred entrainment rate weakens with increasing time of day as convection deepens. Several current cumulus parameterizations are tested for their ability to reproduce the WRF behavior. The Gregory parameterization, in which entrainment rate varies directly with parcel buoyancy and inversely as the square of the updraft speed, is the best predictor of the inferred WRF entrainment profiles. The Gregory scheme depends on a free parameter that represents the fraction of buoyant turbulent kinetic energy generation on the cloud scale that is consumed by the turbulent entrainment process at smaller scales. A single vertical profile of this free parameter, increasing with height above the boundary layer but constant with varying convection depth, produces entrainment rate profiles consistent with those inferred from the WRF over the buoyant depth of the convection. Parameterizations in which entrainment varies inversely with altitude or updraft speed or increases with decreasing tropospheric relative humidity do not perform as well. Entrainment rate at cloud base decreases as convection depth increases; this behavior appears to be related to an increase in vertical velocity at downdraft cold pool edges.
Abstract
In continental convective environments, general circulation models typically produce a diurnal cycle of rainfall that peaks close to the noon maximum of insolation, hours earlier than the observed peak. One possible reason is insufficient sensitivity of their cumulus parameterizations to the state of the environment due to weak entrainment. The Weather Research and Forecasting (WRF) model, run at cloud-resolving (600 and 125 m) resolution, is used to study the diurnal transition from shallow to deep convection during the monsoon break period of the Tropical Warm Pool–International Cloud Experiment. The WRF model develops a transition from shallow to deep convection in isolated events by 1430–1500 local time. The inferred entrainment rate weakens with increasing time of day as convection deepens. Several current cumulus parameterizations are tested for their ability to reproduce the WRF behavior. The Gregory parameterization, in which entrainment rate varies directly with parcel buoyancy and inversely as the square of the updraft speed, is the best predictor of the inferred WRF entrainment profiles. The Gregory scheme depends on a free parameter that represents the fraction of buoyant turbulent kinetic energy generation on the cloud scale that is consumed by the turbulent entrainment process at smaller scales. A single vertical profile of this free parameter, increasing with height above the boundary layer but constant with varying convection depth, produces entrainment rate profiles consistent with those inferred from the WRF over the buoyant depth of the convection. Parameterizations in which entrainment varies inversely with altitude or updraft speed or increases with decreasing tropospheric relative humidity do not perform as well. Entrainment rate at cloud base decreases as convection depth increases; this behavior appears to be related to an increase in vertical velocity at downdraft cold pool edges.
Abstract
A clustering algorithm is used to define the radiative, hydrological, and microphysical properties of precipitating convective events in the equatorial region observed by the Tropical Rainfall Measuring Mission (TRMM) satellite. Storms are separated by surface type, size, and updraft strength, the latter defined by the presence or absence of lightning. SST data and global reanalysis products are used to explore sensitivity to changes in environmental conditions. Small storms are much more numerous than mesoscale convective systems, and account for fairly little of the total rainfall but contribute significantly to reflection of sunlight. Lightning storms rain more heavily, have greater cloud area, extend to higher altitude, and have higher albedos than storms without lightning. Lightning is favored by a steep lower-troposphere lapse rate and moist midlevel humidity. Storms occur more often at SST ≥ 28°C and with strong upward 500-mb mean vertical velocity. In general, storms over warmer ocean waters rain more heavily, are larger, and have higher cloud tops, but they do not have noticeably higher albedos than storms over cooler ocean waters. Mesoscale convective system properties are more sensitive to SST. Rain rates and cloud-top heights increase statistically significantly with mean upward motion. Rain rates increase with albedo and cloud-top height over ocean, but over land there are also storms with cloud-top temperatures >−35°C whose rain rates decrease with increasing albedo. Both the fraction of available moisture that rains out and the fraction that detrains as ice increase with SST, the former faster than the latter. TRMM ice water paths derived from cloud-resolving models but constrained by observed microwave radiances are only weakly correlated with observed albedo. The results are inconsistent with the “adaptive iris” hypothesis and suggest feedbacks due primarily to increasing convective cloud cover with warming, but more weakly than predicted by the “thermostat” hypothesis.
Abstract
A clustering algorithm is used to define the radiative, hydrological, and microphysical properties of precipitating convective events in the equatorial region observed by the Tropical Rainfall Measuring Mission (TRMM) satellite. Storms are separated by surface type, size, and updraft strength, the latter defined by the presence or absence of lightning. SST data and global reanalysis products are used to explore sensitivity to changes in environmental conditions. Small storms are much more numerous than mesoscale convective systems, and account for fairly little of the total rainfall but contribute significantly to reflection of sunlight. Lightning storms rain more heavily, have greater cloud area, extend to higher altitude, and have higher albedos than storms without lightning. Lightning is favored by a steep lower-troposphere lapse rate and moist midlevel humidity. Storms occur more often at SST ≥ 28°C and with strong upward 500-mb mean vertical velocity. In general, storms over warmer ocean waters rain more heavily, are larger, and have higher cloud tops, but they do not have noticeably higher albedos than storms over cooler ocean waters. Mesoscale convective system properties are more sensitive to SST. Rain rates and cloud-top heights increase statistically significantly with mean upward motion. Rain rates increase with albedo and cloud-top height over ocean, but over land there are also storms with cloud-top temperatures >−35°C whose rain rates decrease with increasing albedo. Both the fraction of available moisture that rains out and the fraction that detrains as ice increase with SST, the former faster than the latter. TRMM ice water paths derived from cloud-resolving models but constrained by observed microwave radiances are only weakly correlated with observed albedo. The results are inconsistent with the “adaptive iris” hypothesis and suggest feedbacks due primarily to increasing convective cloud cover with warming, but more weakly than predicted by the “thermostat” hypothesis.
Abstract
In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up.
The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies.
The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth.
Abstract
In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up.
The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies.
The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth.
Abstract
An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores 0the atmosphere to a neutral most convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base. Global aspects of the simulation using the neutral buoyancy closure are almost identical to those obtained in a previous study with a closure relating cumulus mass flux explicitly to large-scale forcing.
A prescription of 0.2 km−1 for the fractional rate of entrainment lower the peak of the convective heating profile, reduces equatorial specific humidifies in the upper atmosphere to more realistic values, and greatly increases eddy kinetic energy at the equator due to reduced momentum mixing. With two cloud types per convective event, each cloud type having a prescribed size and entrainment rate, a clear bimodal distribution of convective mass flux is obtained in strong convective events. At the same time, many of the desirable climate features produced by the neutral buoyancy and entrainment experiments are preserved.
Abstract
An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores 0the atmosphere to a neutral most convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base. Global aspects of the simulation using the neutral buoyancy closure are almost identical to those obtained in a previous study with a closure relating cumulus mass flux explicitly to large-scale forcing.
A prescription of 0.2 km−1 for the fractional rate of entrainment lower the peak of the convective heating profile, reduces equatorial specific humidifies in the upper atmosphere to more realistic values, and greatly increases eddy kinetic energy at the equator due to reduced momentum mixing. With two cloud types per convective event, each cloud type having a prescribed size and entrainment rate, a clear bimodal distribution of convective mass flux is obtained in strong convective events. At the same time, many of the desirable climate features produced by the neutral buoyancy and entrainment experiments are preserved.
Abstract
Aspects of the tropical atmospheric response to El Niño related to the global energy and water cycle are examined using satellite retrievals from the Tropical Rainfall Measuring Mission and the Advanced Microwave Scanning Radiometer-E and simulations from the Goddard Institute for Space Studies (GISS) general circulation model (GCM). The El Niño signal is extracted from climate fields using a linear cross-correlation technique that captures local and remote in-phase and lagged responses. Passive microwave and radar precipitation anomalies for the 1997/98 and 2002/03 El Niños and the intervening La Niña are highly correlated, but anomalies in stratiform–convective rainfall partitioning in the two datasets are not. The GISS GCM produces too much rainfall in general over ocean and too little over land. Its atmospheric response to El Niño is weaker and decays a season too early. Underestimated stratiform rainfall fraction (SRF) and convective downdraft mass flux in the GISS GCM and excessive shallow convective and low stratiform cloud result in latent heating that peaks at lower altitudes than inferred from the data. The GISS GCM also underestimates the column water vapor content throughout the Tropics, which causes it to overestimate outgoing longwave radiation. The response of both quantities to interannual Hadley circulation anomalies is too weak. The GISS GCM’s Walker circulation also exhibits a weak remote response to El Niño, especially over the Maritime Continent and western Indian Ocean. This appears to be a consequence of weak static stability due to the model’s lack of upper-level stratiform anvil heating, excessive low-level heating, and excessive dissipation due to cumulus momentum mixing. Our results suggest that parameterizations of mesoscale updrafts, convective downdrafts, and cumulus-scale pressure gradient effects on momentum transport are keys to a reasonable GISS GCM simulation of tropical interannual variability.
Abstract
Aspects of the tropical atmospheric response to El Niño related to the global energy and water cycle are examined using satellite retrievals from the Tropical Rainfall Measuring Mission and the Advanced Microwave Scanning Radiometer-E and simulations from the Goddard Institute for Space Studies (GISS) general circulation model (GCM). The El Niño signal is extracted from climate fields using a linear cross-correlation technique that captures local and remote in-phase and lagged responses. Passive microwave and radar precipitation anomalies for the 1997/98 and 2002/03 El Niños and the intervening La Niña are highly correlated, but anomalies in stratiform–convective rainfall partitioning in the two datasets are not. The GISS GCM produces too much rainfall in general over ocean and too little over land. Its atmospheric response to El Niño is weaker and decays a season too early. Underestimated stratiform rainfall fraction (SRF) and convective downdraft mass flux in the GISS GCM and excessive shallow convective and low stratiform cloud result in latent heating that peaks at lower altitudes than inferred from the data. The GISS GCM also underestimates the column water vapor content throughout the Tropics, which causes it to overestimate outgoing longwave radiation. The response of both quantities to interannual Hadley circulation anomalies is too weak. The GISS GCM’s Walker circulation also exhibits a weak remote response to El Niño, especially over the Maritime Continent and western Indian Ocean. This appears to be a consequence of weak static stability due to the model’s lack of upper-level stratiform anvil heating, excessive low-level heating, and excessive dissipation due to cumulus momentum mixing. Our results suggest that parameterizations of mesoscale updrafts, convective downdrafts, and cumulus-scale pressure gradient effects on momentum transport are keys to a reasonable GISS GCM simulation of tropical interannual variability.
Abstract
Cumulus congestus clouds, with moderate shortwave albedos and cloud-top temperatures near freezing, occur fairly often in the Tropics. These clouds may play an important role in the evolution of the Madden–Julian oscillation and the regulation of relative humidity in the midtroposphere. Despite this importance they are not necessarily simulated very well in global climate models. Surface remote sensing observations and soundings from the Atmospheric Radiation Measurement (ARM) climate research facility at Nauru Island are coupled with a simple parcel model in order to address the following questions about these cloud types: 1) Which environmental factors play a role in determining the depth of tropical convective clouds? 2) What environmental parameters are related to entrainment rate in cumulus congestus clouds? The results presented herein suggest that at Nauru Island a drying of the midtroposphere is more likely to be responsible for limiting congestus cloud-top heights than is a stabilizing of the freezing level. It is also found that low-level CAPE and the RH profile account for the largest portion of the variance in cumulus congestus entrainment rates, consistent with the idea that entrainment rate depends on the buoyant production of turbulent kinetic energy. If the analysis is limited to cases where there is a sounding during the hour preceding the cumulus congestus observations, it is found that the low-level CAPE accounts for 85% of the total variance in entrainment rate.
Abstract
Cumulus congestus clouds, with moderate shortwave albedos and cloud-top temperatures near freezing, occur fairly often in the Tropics. These clouds may play an important role in the evolution of the Madden–Julian oscillation and the regulation of relative humidity in the midtroposphere. Despite this importance they are not necessarily simulated very well in global climate models. Surface remote sensing observations and soundings from the Atmospheric Radiation Measurement (ARM) climate research facility at Nauru Island are coupled with a simple parcel model in order to address the following questions about these cloud types: 1) Which environmental factors play a role in determining the depth of tropical convective clouds? 2) What environmental parameters are related to entrainment rate in cumulus congestus clouds? The results presented herein suggest that at Nauru Island a drying of the midtroposphere is more likely to be responsible for limiting congestus cloud-top heights than is a stabilizing of the freezing level. It is also found that low-level CAPE and the RH profile account for the largest portion of the variance in cumulus congestus entrainment rates, consistent with the idea that entrainment rate depends on the buoyant production of turbulent kinetic energy. If the analysis is limited to cases where there is a sounding during the hour preceding the cumulus congestus observations, it is found that the low-level CAPE accounts for 85% of the total variance in entrainment rate.
Abstract
Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5–6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5–6 h under humid active monsoon conditions but by only 1–2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0–2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.
Abstract
Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5–6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5–6 h under humid active monsoon conditions but by only 1–2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0–2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.
Abstract
Climate changes obtained from five doubled CO2 experiments with different parameterizations of large-scale clouds and moist convection are studied by use of the Goddard Institute for Space Studies (GISS) GCM at 4° lat × 5° long resolution. The baseline for the experiments is GISS Model II, which uses a diagnostic cloud scheme with fixed optical properties and a convection scheme with fixed cumulus mass fluxes and no downdrafts. The global and annual mean surface air temperature change (ΔT s ) of 4.2°C obtained by Hansen et al using the Model II physics at 8° lat × 10° long resolution is reduced to 3.55°C at the finer resolution. This is due to a significant reduction of tropical cirrus clouds in the warmer climate when a finer resolution is used, despite the fact that the relative humidity increases there with a doubling of CO2. When the new moist convection parameterization of Del Genio and Yao and prognostic large-scale cloud parameterization of Del Genio et al are used, ΔT s is reduced to 3.09°C from 3.55°C. This is the net result of the inclusion of the feedback of cloud optical thickness and phase change of cloud water, and the presence of areally extensive cumulus anvil clouds. Without the optical thickness feedback, ΔT s is further reduced to 2.74°C, suggesting that this feedback is positive overall. Without anvil clouds, ΔT s is increased from 3.09° to 3.7°C, suggesting that anvil clouds of large optical thickness reduce the climate sensitivity. The net effect of using the new large-scale cloud parameterization without including the detrainment of convective cloud water is a slight increase of ΔT s from 3.56° to 3.7°C. The net effect of using the new moist convection parameterization without anvil clouds is insignificant (from 3.55° to 3.56°C). However, this is a result of a combination of many competing differences in other climate parameters. Despite the global cloud cover decrease simulated in most of the experiments, middle- and high-latitude continental cloudiness generally increases with warming, consistent with the sense of observed twentieth-century cloudiness trends; an indirect aerosol effect may therefore not be the sole explanation of these observations.
An analysis of climate sensitivity and changes in cloud radiative forcing (CRF) indicates that the cloud feedback is positive overall in all experiments except the one using the new moist convection and large-scale cloud parameterization with prescribed cloud optical thickness, for which the cloud feedback is nearly neutral. Differences in ΔCRF among the different experiments cannot reliably be anticipated by the analogous differences in current climate CRF. The meridional distribution of ΔCRF suggests that the cloud feedback is positive mostly in the low and midlatitudes, but in the high latitudes, the cloud feedback is mostly negative and the amplification of ΔT s is due to other processes, such as snow/ice–albedo feedback and changes in the lapse rate. The authors’ results suggest that when a sufficiently large variety of cloud feedback mechanisms are allowed for, significant cancellations between positive and negative feedbacks result, causing overall climate sensitivity to be less sensitive to uncertainties in poorly understood cloud physics. In particular, the positive low cloud optical thickness correlations with temperature observed in satellite data argue for a minimum climate sensitivity higher than the 1.5°C that is usually assumed.
Abstract
Climate changes obtained from five doubled CO2 experiments with different parameterizations of large-scale clouds and moist convection are studied by use of the Goddard Institute for Space Studies (GISS) GCM at 4° lat × 5° long resolution. The baseline for the experiments is GISS Model II, which uses a diagnostic cloud scheme with fixed optical properties and a convection scheme with fixed cumulus mass fluxes and no downdrafts. The global and annual mean surface air temperature change (ΔT s ) of 4.2°C obtained by Hansen et al using the Model II physics at 8° lat × 10° long resolution is reduced to 3.55°C at the finer resolution. This is due to a significant reduction of tropical cirrus clouds in the warmer climate when a finer resolution is used, despite the fact that the relative humidity increases there with a doubling of CO2. When the new moist convection parameterization of Del Genio and Yao and prognostic large-scale cloud parameterization of Del Genio et al are used, ΔT s is reduced to 3.09°C from 3.55°C. This is the net result of the inclusion of the feedback of cloud optical thickness and phase change of cloud water, and the presence of areally extensive cumulus anvil clouds. Without the optical thickness feedback, ΔT s is further reduced to 2.74°C, suggesting that this feedback is positive overall. Without anvil clouds, ΔT s is increased from 3.09° to 3.7°C, suggesting that anvil clouds of large optical thickness reduce the climate sensitivity. The net effect of using the new large-scale cloud parameterization without including the detrainment of convective cloud water is a slight increase of ΔT s from 3.56° to 3.7°C. The net effect of using the new moist convection parameterization without anvil clouds is insignificant (from 3.55° to 3.56°C). However, this is a result of a combination of many competing differences in other climate parameters. Despite the global cloud cover decrease simulated in most of the experiments, middle- and high-latitude continental cloudiness generally increases with warming, consistent with the sense of observed twentieth-century cloudiness trends; an indirect aerosol effect may therefore not be the sole explanation of these observations.
An analysis of climate sensitivity and changes in cloud radiative forcing (CRF) indicates that the cloud feedback is positive overall in all experiments except the one using the new moist convection and large-scale cloud parameterization with prescribed cloud optical thickness, for which the cloud feedback is nearly neutral. Differences in ΔCRF among the different experiments cannot reliably be anticipated by the analogous differences in current climate CRF. The meridional distribution of ΔCRF suggests that the cloud feedback is positive mostly in the low and midlatitudes, but in the high latitudes, the cloud feedback is mostly negative and the amplification of ΔT s is due to other processes, such as snow/ice–albedo feedback and changes in the lapse rate. The authors’ results suggest that when a sufficiently large variety of cloud feedback mechanisms are allowed for, significant cancellations between positive and negative feedbacks result, causing overall climate sensitivity to be less sensitive to uncertainties in poorly understood cloud physics. In particular, the positive low cloud optical thickness correlations with temperature observed in satellite data argue for a minimum climate sensitivity higher than the 1.5°C that is usually assumed.
Abstract
Satellite observations of low-level clouds have challenged the idea that increasing liquid water content with temperature combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. The reasons for the satellite results are explored using 4 yr of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the southern Great Plains of the United States. It is found that low-cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal timescales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low-cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior observed is best explained as a transition in the frequency of occurrence of different boundary layer types. At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, suggest a reexamination of the commonly quoted 1.5°C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models in which liquid water increases with temperature and cloud physical thickness is constant.
Abstract
Satellite observations of low-level clouds have challenged the idea that increasing liquid water content with temperature combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. The reasons for the satellite results are explored using 4 yr of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the southern Great Plains of the United States. It is found that low-cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal timescales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low-cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior observed is best explained as a transition in the frequency of occurrence of different boundary layer types. At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, suggest a reexamination of the commonly quoted 1.5°C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models in which liquid water increases with temperature and cloud physical thickness is constant.