Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Anthony W. Lyza x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Andrew R. Wade
Israel L. Jirak
, and
Anthony W. Lyza


This study investigates regional, seasonal biases in convection-allowing model forecasts of near-surface temperature and dewpoint in areas of particular importance to forecasts of severe local storms. One method compares model forecasts with objective analyses of observed conditions in the inflow sectors of reported tornadoes. A second method captures a broader sample of environments, comparing model forecasts with surface observations under certain warm-sector criteria. Both methods reveal a cold bias across all models tested in Southeast U.S. cool-season warm sectors. This is an operationally important bias given the thermodynamic sensitivity of instability-limited severe weather that is common in the Southeast cool season. There is not a clear bias across models in the Great Plains warm season, but instead more varied behavior with differing model physics.

Significance Statement

The severity of thunderstorms and the types of hazards they produce depend in part on the low-level temperature and moisture in the near-storm environment. It is important for numerical forecast models to accurately represent these fields in forecasts of severe weather events. We show that the most widely used short-term, high-resolution forecast models have a consistent cold bias of about 1 K (up to 2 K in certain cases) in storm environments in the southeastern U.S. cool season. Human forecasters must recognize and adjust for this bias, and future model development should aim to improve it.

Restricted access