Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Ants Leetmaa x
- Journal of Atmospheric and Oceanic Technology x
- Refine by Access: All Content x
Abstract
Equatorial Pacific current and temperature fields were simulated with and without assimilation of subsurface temperature measurements for April 1992–March 1995 and compared with moored buoy and research vessel current measurements. Data assimilation intensified the mean east–west slope of the thermocline along the equator in the eastern Pacific, shifted eastward the longitude of the mean Equatorial Undercurrent (EUC) maximum speed 800 km to 125°W, and produced a 25% stronger mean EUC core speed in the eastern Pacific. In the eastern Pacific the mean EUC core speed simulated with data assimilation was slightly more representative of observations compared to that computed without data assimilated; in the western Pacific the data assimilation had no impact on mean EUC simulations.
Data assimilation intensified the north–south slope of the thermocline south of the equator in the western Pacific to produce a thicker and more intense westward-flowing South Equatorial Current (SEC) in the western Pacific. In the western Pacific the mean SEC transport per unit width simulated with data assimilation was more representative of observations compared to that computed without data assimilation. However, large differences remained between the observed SEC transport per unit width and that simulated with data assimilation. In the eastern Pacific, the data assimilation had no impact on mean SEC simulations.
The temporal variability of monthly mean EUC core speeds and SEC transports per unit width were increased significantly by data assimilation. It also increased the representativeness of monthly mean SEC transports per unit width to the observations. However, the data representativeness of monthly mean EUC core speeds was decreased. Results could be explained by the coupling between zonal gradient of temperature and EUC and between meridional gradient of temperature and SEC. Longitudinal variations along the Pacific equator of the impact of data assimilation on the EUC and SEC precludes the choice of a single site to evaluate the effectiveness of data assimilation schemes.
Abstract
Equatorial Pacific current and temperature fields were simulated with and without assimilation of subsurface temperature measurements for April 1992–March 1995 and compared with moored buoy and research vessel current measurements. Data assimilation intensified the mean east–west slope of the thermocline along the equator in the eastern Pacific, shifted eastward the longitude of the mean Equatorial Undercurrent (EUC) maximum speed 800 km to 125°W, and produced a 25% stronger mean EUC core speed in the eastern Pacific. In the eastern Pacific the mean EUC core speed simulated with data assimilation was slightly more representative of observations compared to that computed without data assimilated; in the western Pacific the data assimilation had no impact on mean EUC simulations.
Data assimilation intensified the north–south slope of the thermocline south of the equator in the western Pacific to produce a thicker and more intense westward-flowing South Equatorial Current (SEC) in the western Pacific. In the western Pacific the mean SEC transport per unit width simulated with data assimilation was more representative of observations compared to that computed without data assimilation. However, large differences remained between the observed SEC transport per unit width and that simulated with data assimilation. In the eastern Pacific, the data assimilation had no impact on mean SEC simulations.
The temporal variability of monthly mean EUC core speeds and SEC transports per unit width were increased significantly by data assimilation. It also increased the representativeness of monthly mean SEC transports per unit width to the observations. However, the data representativeness of monthly mean EUC core speeds was decreased. Results could be explained by the coupling between zonal gradient of temperature and EUC and between meridional gradient of temperature and SEC. Longitudinal variations along the Pacific equator of the impact of data assimilation on the EUC and SEC precludes the choice of a single site to evaluate the effectiveness of data assimilation schemes.