Search Results
You are looking at 1 - 10 of 11 items for :
- Author or Editor: Ants Leetmaa x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
The link between El Niño and the California wintertime rainfall has been reported in various studies. During the winter of 1994/95, warm sea surface temperature anomalies (SSTAs) were observed in the central Pacific, and widespread significant flooding occurred in California during January 1995 and March 1995. However, the El Niño–Southern Oscillation alone cannot explain the flooding. In March 1995 California suffered flooding after the warm SSTA over the central Pacific had weakened considerably. During November and December, in spite of El Niño conditions, California was not flooded, and more than two standard deviations above normal SSTA in the North Pacific were observed. A possible link between midlatitude warm SSTA and the timing of the onset of flooding is suspected within the seasonal forecasting community.
The climate condition during the northern winter of 1994/95 is described using the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data. Diagnostics show the typical El Niño pattern in the seasonal mean and the link between the position of the jet exit and the flooding over California on the intraseasonal timescale.
The relationship among California floods, the Pacific jet, tropical rainfall, and SSTA is inferred from results of general circulation model (GCM) experiments with various SSTAs. The results show that the rainfall over California is associated with an eastward extension of the Pacific jet, which itself is associated with enhanced tropical convection over the warm SSTA in the central Pacific. The GCM experiments also show that rainfall over the Indian Ocean can contribute to the weakening of the Pacific jet and to dryness over California. The GCM experiments did not show significant impact of North Pacific SSTA, either upon the Pacific jet or upon rainfall over California. The agreement with diagnostics results is discussed. GCM experiments suggest the link between the tropical intraseasonal oscillation (TIO) and the flooding in March in California, since there is a strong TIO component in rainfall over the Indian Ocean.
Abstract
The link between El Niño and the California wintertime rainfall has been reported in various studies. During the winter of 1994/95, warm sea surface temperature anomalies (SSTAs) were observed in the central Pacific, and widespread significant flooding occurred in California during January 1995 and March 1995. However, the El Niño–Southern Oscillation alone cannot explain the flooding. In March 1995 California suffered flooding after the warm SSTA over the central Pacific had weakened considerably. During November and December, in spite of El Niño conditions, California was not flooded, and more than two standard deviations above normal SSTA in the North Pacific were observed. A possible link between midlatitude warm SSTA and the timing of the onset of flooding is suspected within the seasonal forecasting community.
The climate condition during the northern winter of 1994/95 is described using the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data. Diagnostics show the typical El Niño pattern in the seasonal mean and the link between the position of the jet exit and the flooding over California on the intraseasonal timescale.
The relationship among California floods, the Pacific jet, tropical rainfall, and SSTA is inferred from results of general circulation model (GCM) experiments with various SSTAs. The results show that the rainfall over California is associated with an eastward extension of the Pacific jet, which itself is associated with enhanced tropical convection over the warm SSTA in the central Pacific. The GCM experiments also show that rainfall over the Indian Ocean can contribute to the weakening of the Pacific jet and to dryness over California. The GCM experiments did not show significant impact of North Pacific SSTA, either upon the Pacific jet or upon rainfall over California. The agreement with diagnostics results is discussed. GCM experiments suggest the link between the tropical intraseasonal oscillation (TIO) and the flooding in March in California, since there is a strong TIO component in rainfall over the Indian Ocean.
Abstract
The evolution of oceanic and atmospheric anomaly fields for the period prior to and during the 1986–87 El Niño/Southem Oscillation (ENSO) is presented. A comparison is made between the 1986–87 ENSO and other warm episodes that occurred during the last 20 yr. In addition, for the first time, an ocean general circulation model was run in a real-time diagnostic mode. The model output provided detailed information about the evolution of subsurface features throughout the Pacific basin.
A slow trend towards warm episode (ENSO) conditions in the Pacific was evident throughout the period 1985–86 in certain atmospheric and oceanic variables. Atmospheric and oceanic fields changed much more rapidly during late 1986 as enhanced atmospheric convection developed in the equatorial Pacific near the date line. Thermocline depths rapidly increased (decreased) in the eastern (western) equatorial Pacific as low-level westerlies developed in the western portion of the basin. A remote response to those westerlies was felt along the west coast of South America in early 1987 as sea surface temperatures (SSTs) increased 3°–5°C above normal. Conditions remained anomalous in the tropical Pacific throughout 1987, but began a rapid return towards normal late in the year as low-level easterlies increased in strength. By the northern spring 1988, below normal SSTs were observed throughout the equatorial Pacific east of the date line.
Abstract
The evolution of oceanic and atmospheric anomaly fields for the period prior to and during the 1986–87 El Niño/Southem Oscillation (ENSO) is presented. A comparison is made between the 1986–87 ENSO and other warm episodes that occurred during the last 20 yr. In addition, for the first time, an ocean general circulation model was run in a real-time diagnostic mode. The model output provided detailed information about the evolution of subsurface features throughout the Pacific basin.
A slow trend towards warm episode (ENSO) conditions in the Pacific was evident throughout the period 1985–86 in certain atmospheric and oceanic variables. Atmospheric and oceanic fields changed much more rapidly during late 1986 as enhanced atmospheric convection developed in the equatorial Pacific near the date line. Thermocline depths rapidly increased (decreased) in the eastern (western) equatorial Pacific as low-level westerlies developed in the western portion of the basin. A remote response to those westerlies was felt along the west coast of South America in early 1987 as sea surface temperatures (SSTs) increased 3°–5°C above normal. Conditions remained anomalous in the tropical Pacific throughout 1987, but began a rapid return towards normal late in the year as low-level easterlies increased in strength. By the northern spring 1988, below normal SSTs were observed throughout the equatorial Pacific east of the date line.
Abstract
A series of seasonally varying linear Markov models are constructed in a reduced multivariate empirical orthogonal function (MEOF) space of observed sea surface temperature, surface wind stress, and sea level analysis. The Markov models are trained in the 1980–95 period and are verified in the 1964–79 period. It is found that the Markov models that include seasonality fit to the data better in the training period and have a substantially higher skill in the independent period than the models without seasonality. The authors conclude that seasonality is an important component of ENSO and should be included in Markov models. This conclusion is consistent with that of statistical models that take seasonality into account using different methods.
The impact of each variable on the prediction skill of Markov models is investigated by varying the weightings among the three variables in the MEOF space. For the training period the Markov models that include sea level information fit the data better than the models without sea level information. For the independent 1964–79 period, the Markov models that include sea level information have a much higher skill than the Markov models without sea level information. The authors conclude that sea level contains the most essential information for ENSO since it contains the filtered response of the ocean to noisy wind forcing.
The prediction skill of the Markov model with three MEOFs is competitive for both the training and independent periods. This Markov model successfully predicted the 1997/98 El Niño and the 1998/99 La Niña.
Abstract
A series of seasonally varying linear Markov models are constructed in a reduced multivariate empirical orthogonal function (MEOF) space of observed sea surface temperature, surface wind stress, and sea level analysis. The Markov models are trained in the 1980–95 period and are verified in the 1964–79 period. It is found that the Markov models that include seasonality fit to the data better in the training period and have a substantially higher skill in the independent period than the models without seasonality. The authors conclude that seasonality is an important component of ENSO and should be included in Markov models. This conclusion is consistent with that of statistical models that take seasonality into account using different methods.
The impact of each variable on the prediction skill of Markov models is investigated by varying the weightings among the three variables in the MEOF space. For the training period the Markov models that include sea level information fit the data better than the models without sea level information. For the independent 1964–79 period, the Markov models that include sea level information have a much higher skill than the Markov models without sea level information. The authors conclude that sea level contains the most essential information for ENSO since it contains the filtered response of the ocean to noisy wind forcing.
The prediction skill of the Markov model with three MEOFs is competitive for both the training and independent periods. This Markov model successfully predicted the 1997/98 El Niño and the 1998/99 La Niña.
Abstract
In this study, the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) has been evaluated as a means of enhancing the depiction of regional details beyond that which is capable in low-resolution global models. Three-month-long simulations driven by the NCEP–National Center for Atmospheric Research 40-yr reanalysis data are conducted with a horizontal resolution of about 50 km over the United States, for the two winters and summers. The selected winter cases are December–February (DJF) 1991/92 (warm eastern Pacific SST anomalies) and DJF 1992/93 (normal eastern Pacific SST anomalies). Summer cases are May–July (MJJ) 1988 (a drought in the Great Plains) and MJJ 1993 (a flooding).
Overall, the results from the model are very satisfactory in terms of the precipitation distribution for different seasons as well as the representation of large-scale features. Evaluation of simulated large-scale features reveals that the model does not exhibit a discernible synoptic-scale drift during the 3-month integration period, irrespective of the seasons. Surprisingly, the model simulation is found to correct some biases in the large-scale fields that exist in the reanalysis data. This bias reduction is attributed to the improved depiction of physical processes within the RSM. This finding indicates that one should take special care in the interpretation and validation of simulated results against the analyzed data.
Evaluation of the RSM simulated precipitation for the winter and summer cases generally agrees with results obtained from previous studies. For instance, the skill for simulated precipitation in the winter cases exceeds that of the summer cases by a factor of 2. Comparison of simulated precipitation with observations reveals the 3-month-long RSM simulated precipitation to be more skillful than that obtained from the reanalysis data (the 6-h forecast from the data assimilation system). In addition to seasonal variations in precipitation, daily variation in the simulated precipitation is quite good. However, detailed analysis points to the need for further RSM development, particularly in physics. In the summer cases the grid-resolvable precipitation physics simulate excessive precipitation over the northern United States. A more serious problem is found in the diurnal cycle of the simulation precipitation, in that the model initiates convection too early. Despite these deficiencies, it is concluded that the NCEP RSM is a very useful tool for regional climate studies.
Abstract
In this study, the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) has been evaluated as a means of enhancing the depiction of regional details beyond that which is capable in low-resolution global models. Three-month-long simulations driven by the NCEP–National Center for Atmospheric Research 40-yr reanalysis data are conducted with a horizontal resolution of about 50 km over the United States, for the two winters and summers. The selected winter cases are December–February (DJF) 1991/92 (warm eastern Pacific SST anomalies) and DJF 1992/93 (normal eastern Pacific SST anomalies). Summer cases are May–July (MJJ) 1988 (a drought in the Great Plains) and MJJ 1993 (a flooding).
Overall, the results from the model are very satisfactory in terms of the precipitation distribution for different seasons as well as the representation of large-scale features. Evaluation of simulated large-scale features reveals that the model does not exhibit a discernible synoptic-scale drift during the 3-month integration period, irrespective of the seasons. Surprisingly, the model simulation is found to correct some biases in the large-scale fields that exist in the reanalysis data. This bias reduction is attributed to the improved depiction of physical processes within the RSM. This finding indicates that one should take special care in the interpretation and validation of simulated results against the analyzed data.
Evaluation of the RSM simulated precipitation for the winter and summer cases generally agrees with results obtained from previous studies. For instance, the skill for simulated precipitation in the winter cases exceeds that of the summer cases by a factor of 2. Comparison of simulated precipitation with observations reveals the 3-month-long RSM simulated precipitation to be more skillful than that obtained from the reanalysis data (the 6-h forecast from the data assimilation system). In addition to seasonal variations in precipitation, daily variation in the simulated precipitation is quite good. However, detailed analysis points to the need for further RSM development, particularly in physics. In the summer cases the grid-resolvable precipitation physics simulate excessive precipitation over the northern United States. A more serious problem is found in the diurnal cycle of the simulation precipitation, in that the model initiates convection too early. Despite these deficiencies, it is concluded that the NCEP RSM is a very useful tool for regional climate studies.
Abstract
In this paper, the authors discuss observed climatic variability from 1982 to early 1995 and emphasize the contrasts between the period of strong interannual variability during the 1980s and the period of more persistent features beginning in 1990. Three versions of the NCEP coupled forecast model, which were developed to predict interannual sea surface temperature variability in the equatorial Pacific, are described and their performance compared for those two periods.
Climatic variability during 1982–1992 in the tropical Pacific was dominated by strong low-frequency interannual variations characterized by three warm and two cold El Niño episodes. However, beginning in 1990, the climate state has been characterized by a pattern of persistent positive SST anomalies in the tropical Pacific, especially in the central Pacific near the date line, and weaker than normal trade winds. Superimposed on this were several occurrences of short-lived, generally small-amplitude warmings in the eastern equatorial Pacific. Some of the short-lived warmings amplified into mature warm episodes, such as in spring 1993 and in late 1994.
The NCEP coupled models showed useful skill in predicting low-frequency SST variability associated with warm episodes in the tropical Pacific during the 1982–1992 period. However, the short-lived warmings in spring 1993 and fall/winter 1994/95 were not well predicted by the NCEP coupled models. Neither were they predicted by most of the other dynamic or statistical forecast models. If these short-lived warmings truly represent a different behavior of the coupled ocean-atmosphere system on intraseasonal timescales, the skill levels that were developed for predicting the strong low-frequency SST variability of the 1980s are probably not relevant. The lead times for skillful forecasts of short-lived episodes such as those observed in recent years will no doubt be only a few months.
Abstract
In this paper, the authors discuss observed climatic variability from 1982 to early 1995 and emphasize the contrasts between the period of strong interannual variability during the 1980s and the period of more persistent features beginning in 1990. Three versions of the NCEP coupled forecast model, which were developed to predict interannual sea surface temperature variability in the equatorial Pacific, are described and their performance compared for those two periods.
Climatic variability during 1982–1992 in the tropical Pacific was dominated by strong low-frequency interannual variations characterized by three warm and two cold El Niño episodes. However, beginning in 1990, the climate state has been characterized by a pattern of persistent positive SST anomalies in the tropical Pacific, especially in the central Pacific near the date line, and weaker than normal trade winds. Superimposed on this were several occurrences of short-lived, generally small-amplitude warmings in the eastern equatorial Pacific. Some of the short-lived warmings amplified into mature warm episodes, such as in spring 1993 and in late 1994.
The NCEP coupled models showed useful skill in predicting low-frequency SST variability associated with warm episodes in the tropical Pacific during the 1982–1992 period. However, the short-lived warmings in spring 1993 and fall/winter 1994/95 were not well predicted by the NCEP coupled models. Neither were they predicted by most of the other dynamic or statistical forecast models. If these short-lived warmings truly represent a different behavior of the coupled ocean-atmosphere system on intraseasonal timescales, the skill levels that were developed for predicting the strong low-frequency SST variability of the 1980s are probably not relevant. The lead times for skillful forecasts of short-lived episodes such as those observed in recent years will no doubt be only a few months.
Abstract
North America experienced sustained and strong surface warming during 1997 and 1998. This period coincided with a dramatic swing of the El Niño–Southern Oscillation (ENSO), with El Niño in 1997 rapidly replaced by La Niña in 1998. An additional aspect of the sea surface temperatures (SSTs) was the warmth of the world oceans as a whole for the entire period, with unprecedented amplitudes within the recent instrumental record. Using a suite of dynamical and empirical model simulations, this study examines the causes for the North American warming, focusing on the role of the sea surface boundary conditions.
Two sets of atmospheric general circulation model experiments, one forced with the observed global SSTs and the other with the tropical east Pacific portion only, produce similar North American–wide warming during fall and winter of 1997. The GCM results match empirical estimates of the canonical temperature response related to a strong El Niño and confirm that east equatorial Pacific SST forcing was a major factor in the continental warming of 1997.
Perpetuation of that warming from spring through fall of 1998 is shown to be unrelated to equatorial east Pacific SSTs and thus cannot be attributed to the ENSO cycle directly. Yet, simulations using the observed global SSTs are shown to reproduce realistically the continuation of North American warming throughout 1998. The continental warmth occurs in tandem with a warming of the troposphere that, initially confined to tropical latitudes during El Niño’s peak in 1997, spreads poleward and covers the entire globe in 1998. This evolutionary aspect of the global circulation anomalies during 1997 and 1998 is found to be a response to global SSTs and not linked directly to ENSO’s evolution.
Results presented here demonstrate that a significant fraction of the North American warming in 1997 and 1998 is explainable as the forced response to sea surface boundary conditions. The hand-over in the impact of those SSTs, with a classic ENSO driven signal in 1997 but an outwardly independent signal in 1998 related to the disposition of global SSTs outside the ENSO region is emphasized. The high potential predictability of North American climate during this 2-yr period raises new questions on the role of global SSTs in climate variability and the ability to predict them skillfully.
Abstract
North America experienced sustained and strong surface warming during 1997 and 1998. This period coincided with a dramatic swing of the El Niño–Southern Oscillation (ENSO), with El Niño in 1997 rapidly replaced by La Niña in 1998. An additional aspect of the sea surface temperatures (SSTs) was the warmth of the world oceans as a whole for the entire period, with unprecedented amplitudes within the recent instrumental record. Using a suite of dynamical and empirical model simulations, this study examines the causes for the North American warming, focusing on the role of the sea surface boundary conditions.
Two sets of atmospheric general circulation model experiments, one forced with the observed global SSTs and the other with the tropical east Pacific portion only, produce similar North American–wide warming during fall and winter of 1997. The GCM results match empirical estimates of the canonical temperature response related to a strong El Niño and confirm that east equatorial Pacific SST forcing was a major factor in the continental warming of 1997.
Perpetuation of that warming from spring through fall of 1998 is shown to be unrelated to equatorial east Pacific SSTs and thus cannot be attributed to the ENSO cycle directly. Yet, simulations using the observed global SSTs are shown to reproduce realistically the continuation of North American warming throughout 1998. The continental warmth occurs in tandem with a warming of the troposphere that, initially confined to tropical latitudes during El Niño’s peak in 1997, spreads poleward and covers the entire globe in 1998. This evolutionary aspect of the global circulation anomalies during 1997 and 1998 is found to be a response to global SSTs and not linked directly to ENSO’s evolution.
Results presented here demonstrate that a significant fraction of the North American warming in 1997 and 1998 is explainable as the forced response to sea surface boundary conditions. The hand-over in the impact of those SSTs, with a classic ENSO driven signal in 1997 but an outwardly independent signal in 1998 related to the disposition of global SSTs outside the ENSO region is emphasized. The high potential predictability of North American climate during this 2-yr period raises new questions on the role of global SSTs in climate variability and the ability to predict them skillfully.
Abstract
The individual impacts of sea surface temperature (SST) anomalies in the deep tropical eastern–central Pacific (DTEP) and Indo-western–central Pacific (IWP) on the evolution of the observed global atmospheric circulation during the 1997–2003 period have been investigated using a new general circulation model. Ensemble integrations were conducted with monthly varying SST conditions being prescribed separately in the DTEP sector, the IWP sector, and throughout the World Ocean. During the 1998–2002 subperiod, when prolonged La Niña conditions occurred in DTEP and the SST in IWP was above normal, the simulated midlatitude atmospheric responses to SST forcing in the DTEP and IWP sectors reinforced each other. The anomalous geopotential height ridges at 200 mb in the extratropics of both hemispheres exhibited a distinct zonal symmetry. This circulation change was accompanied by extensive dry and warm anomalies in many regions, including North America. During the 1997–98 and 2002–03 El Niño events, the SST conditions in both DTEP and IWP were above normal, and considerable cancellations were simulated between the midlatitude responses to the oceanic forcing from these two sectors. The above findings are contrasted with those for the 1953–58 and 1972–77 periods, which were characterized by analogous SST developments in DTEP, but by cold conditions in IWP. It is concluded that a warm anomaly in IWP and a cold anomaly in DTEP constitute the optimal SST configuration for generating zonally elongated ridges in the midlatitudes.
Local diagnoses indicate that the imposed SST anomaly alters the strength of the zonal flow in certain longitudinal sectors, which influences the behavior of synoptic-scale transient eddies farther downstream. The modified eddy momentum transports in the regions of eddy activity in turn feed back on the local mean flow, thus contributing to its zonal elongation. These results are consistent with the inferences drawn from zonal mean analyses, which accentuate the role of the eddy-induced circulation on the meridional plane.
Abstract
The individual impacts of sea surface temperature (SST) anomalies in the deep tropical eastern–central Pacific (DTEP) and Indo-western–central Pacific (IWP) on the evolution of the observed global atmospheric circulation during the 1997–2003 period have been investigated using a new general circulation model. Ensemble integrations were conducted with monthly varying SST conditions being prescribed separately in the DTEP sector, the IWP sector, and throughout the World Ocean. During the 1998–2002 subperiod, when prolonged La Niña conditions occurred in DTEP and the SST in IWP was above normal, the simulated midlatitude atmospheric responses to SST forcing in the DTEP and IWP sectors reinforced each other. The anomalous geopotential height ridges at 200 mb in the extratropics of both hemispheres exhibited a distinct zonal symmetry. This circulation change was accompanied by extensive dry and warm anomalies in many regions, including North America. During the 1997–98 and 2002–03 El Niño events, the SST conditions in both DTEP and IWP were above normal, and considerable cancellations were simulated between the midlatitude responses to the oceanic forcing from these two sectors. The above findings are contrasted with those for the 1953–58 and 1972–77 periods, which were characterized by analogous SST developments in DTEP, but by cold conditions in IWP. It is concluded that a warm anomaly in IWP and a cold anomaly in DTEP constitute the optimal SST configuration for generating zonally elongated ridges in the midlatitudes.
Local diagnoses indicate that the imposed SST anomaly alters the strength of the zonal flow in certain longitudinal sectors, which influences the behavior of synoptic-scale transient eddies farther downstream. The modified eddy momentum transports in the regions of eddy activity in turn feed back on the local mean flow, thus contributing to its zonal elongation. These results are consistent with the inferences drawn from zonal mean analyses, which accentuate the role of the eddy-induced circulation on the meridional plane.
Abstract
The modulation of El Niño and La Niña responses by the long-term sea surface temperature (SST) warming trend in the Indian–Western Pacific (IWP) Oceans has been investigated using a large suite of sensitivity integrations with an atmospheric general circulation model. These model runs entail the prescription of anomalous SST conditions corresponding to composite El Niño or La Niña episodes, to SST increases associated with secular warming in IWP, and to combinations of IWP warming and El Niño/La Niña. These SST forcings are derived from the output of coupled model experiments for climate settings of the 1951–2000 and 2001–50 epochs. Emphasis is placed on the wintertime responses in 200-mb height and various indicators of surface climate in the North American sector.
The model responses to El Niño and La Niña forcings are in agreement with the observed interannual anomalies associated with warm and cold episodes. The wintertime model responses in North America to IWP warming bear a distinct positive (negative) spatial correlation with the corresponding responses to La Niña (El Niño). Hence, the amplitude of the combined responses to IWP warming and La Niña is notably higher than that to IWP warming and El Niño. The model projections indicate that, as the SST continues to rise in the IWP sector during the twenty-first century, the strength of various meteorological anomalies accompanying La Niña (El Niño) will increase (decrease) with time. The response of the North American climate and the zonal mean circulation to the combined effects of IWP forcing and La Niña (El Niño) is approximately equal to the linear sum of the separate effects of IWP warming and La Niña (El Niño).
The summertime responses to IWP warming bear some similarity to the meteorological anomalies accompanying extended droughts and heat waves over the continental United States.
Abstract
The modulation of El Niño and La Niña responses by the long-term sea surface temperature (SST) warming trend in the Indian–Western Pacific (IWP) Oceans has been investigated using a large suite of sensitivity integrations with an atmospheric general circulation model. These model runs entail the prescription of anomalous SST conditions corresponding to composite El Niño or La Niña episodes, to SST increases associated with secular warming in IWP, and to combinations of IWP warming and El Niño/La Niña. These SST forcings are derived from the output of coupled model experiments for climate settings of the 1951–2000 and 2001–50 epochs. Emphasis is placed on the wintertime responses in 200-mb height and various indicators of surface climate in the North American sector.
The model responses to El Niño and La Niña forcings are in agreement with the observed interannual anomalies associated with warm and cold episodes. The wintertime model responses in North America to IWP warming bear a distinct positive (negative) spatial correlation with the corresponding responses to La Niña (El Niño). Hence, the amplitude of the combined responses to IWP warming and La Niña is notably higher than that to IWP warming and El Niño. The model projections indicate that, as the SST continues to rise in the IWP sector during the twenty-first century, the strength of various meteorological anomalies accompanying La Niña (El Niño) will increase (decrease) with time. The response of the North American climate and the zonal mean circulation to the combined effects of IWP forcing and La Niña (El Niño) is approximately equal to the linear sum of the separate effects of IWP warming and La Niña (El Niño).
The summertime responses to IWP warming bear some similarity to the meteorological anomalies accompanying extended droughts and heat waves over the continental United States.
Abstract
Surface wind analyses from three data assimilation systems are compared with independent wind observations from six buoys located in the Pacific within 8 deg of the equator. The period of comparison is 6 months (February to July 1987), with daily sampling.
The agreement between the assimilation systems and the independent buoy data is disappointing. The longterm mean differences between the buoy and the assimilated zonal and meridional winds are as large as 3.1 m s−1, which is comparable to the size of the means themselves. The zonal and meridional daily wind correlations range between 0.66 and 0.17. The wind field agreement was actually better among the different systems than between any system and the buoys. However, the agreement among the analysis products was usually better for the zonal winds than for the meridional winds. For the time period and locations presented, the comparisons with the independent data show that no assimilation system is clearly superior to any of the others.
Abstract
Surface wind analyses from three data assimilation systems are compared with independent wind observations from six buoys located in the Pacific within 8 deg of the equator. The period of comparison is 6 months (February to July 1987), with daily sampling.
The agreement between the assimilation systems and the independent buoy data is disappointing. The longterm mean differences between the buoy and the assimilated zonal and meridional winds are as large as 3.1 m s−1, which is comparable to the size of the means themselves. The zonal and meridional daily wind correlations range between 0.66 and 0.17. The wind field agreement was actually better among the different systems than between any system and the buoys. However, the agreement among the analysis products was usually better for the zonal winds than for the meridional winds. For the time period and locations presented, the comparisons with the independent data show that no assimilation system is clearly superior to any of the others.
Abstract
A prominent year-round ensemble response to a global sea surface temperature (SST) anomaly field fixed to that for January 1992 (near the peak of a major warm El Niño–Southern Oscillation episode) was observed in a 20-yr integration of the general circulation model used for operational seasonal prediction by the U.S. National Weather Service. This motivated a detailed observational reassessment of the teleconnections between strong SST anomalies in the central equatorial Pacific Ocean and Pacific–North America region 700-hPa heights and U.S. surface temperatures and precipitation. The approach used consisted of formation of monthly mean composites formed separately from cases in which the SST anomaly in a key area of the central equatorial Pacific Ocean was either large and positive or large and negative. Extensive permutation tests were conducted to test null hypotheses of no signal in these composites. The results provided a substantial case for the presence of teleconnections to either the positive- or negative-SST anomalies in every month of the year. These signals were seasonally varying (sometimes with substantial month to month changes) and, when present for both SST-anomaly signs in a particular month, usually were not similarly phased patterns of opposite polarity (i.e., the SST–teleconnected variable relationships were most often nonlinear).
A suite of 13 45-yr integrations of the same model described above was run with global SST analyses reconstructed from the observational record. Corresponding composites from the model were formed and compared visually and quantitatively with the high-confidence observational signals. The quantitative comparisons included skill analyses utilizing a decomposition that relates the squared differences between two maps to phase correspondence and amplitude and bias error terms and analyses of the variance about composite means. For the latter, in the case of the model runs it was possible to estimate the portions of this variance attributable to case to case variation in SSTs and to internal variability. Comparisons to monthly mean maps and analyses of variance for the 20-yr run with SSTs fixed to January 1992 values were also made.
The visual and quantitative comparisons all revealed different aspects of prominent model systematic errors that have important implications for the optimum exploitation of the model for use in prediction. One of these implications was that the current model’s ensemble responses to SST forcing will not be optimally useful until after nonlinear correction of SST-field-dependent systematic errors.
Abstract
A prominent year-round ensemble response to a global sea surface temperature (SST) anomaly field fixed to that for January 1992 (near the peak of a major warm El Niño–Southern Oscillation episode) was observed in a 20-yr integration of the general circulation model used for operational seasonal prediction by the U.S. National Weather Service. This motivated a detailed observational reassessment of the teleconnections between strong SST anomalies in the central equatorial Pacific Ocean and Pacific–North America region 700-hPa heights and U.S. surface temperatures and precipitation. The approach used consisted of formation of monthly mean composites formed separately from cases in which the SST anomaly in a key area of the central equatorial Pacific Ocean was either large and positive or large and negative. Extensive permutation tests were conducted to test null hypotheses of no signal in these composites. The results provided a substantial case for the presence of teleconnections to either the positive- or negative-SST anomalies in every month of the year. These signals were seasonally varying (sometimes with substantial month to month changes) and, when present for both SST-anomaly signs in a particular month, usually were not similarly phased patterns of opposite polarity (i.e., the SST–teleconnected variable relationships were most often nonlinear).
A suite of 13 45-yr integrations of the same model described above was run with global SST analyses reconstructed from the observational record. Corresponding composites from the model were formed and compared visually and quantitatively with the high-confidence observational signals. The quantitative comparisons included skill analyses utilizing a decomposition that relates the squared differences between two maps to phase correspondence and amplitude and bias error terms and analyses of the variance about composite means. For the latter, in the case of the model runs it was possible to estimate the portions of this variance attributable to case to case variation in SSTs and to internal variability. Comparisons to monthly mean maps and analyses of variance for the 20-yr run with SSTs fixed to January 1992 values were also made.
The visual and quantitative comparisons all revealed different aspects of prominent model systematic errors that have important implications for the optimum exploitation of the model for use in prediction. One of these implications was that the current model’s ensemble responses to SST forcing will not be optimally useful until after nonlinear correction of SST-field-dependent systematic errors.