Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Arnold Gruber x
- Journal of Hydrometeorology x
- Refine by Access: All Content x
Abstract
The two monthly precipitation products of the Global Precipitation Climatology Project (GPCP) and the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) are compared on a 23-yr period, January 1979–December 2001. For the long-term mean, major precipitation patterns are clearly demonstrated by both products, but there are differences in the pattern magnitudes. In the tropical ocean the CMAP is higher than the GPCP, but this is reversed in the high-latitude ocean. The GPCP–CMAP spatial correlation is generally higher over land than over the ocean. The correlation between the global mean oceanic GPCP and CMAP is significantly low. It is very likely because the input data of the two products have much less in common over the ocean; in particular, the use of atoll data by the CMAP is disputable. The decreasing trend in the CMAP oceanic precipitation is found to be an artifact of input data change and atoll sampling error. In general, overocean precipitation represented by the GPCP is more reasonable; over land the two products are close, but different merging algorithms between the GPCP and the CMAP can sometimes produce substantial discrepancy in sensitive areas such as equatorial West Africa. EOF analysis shows that the GPCP and the CMAP are similar in 6 out of the first 10 modes, and the first 2 leading modes (ENSO patterns) of the GPCP are nearly identical to their counterparts of the CMAP. Input data changes [e.g., January 1986 for Geostationary Operational Environmental Satellite (GOES) precipitation index (GPI), July 1987 for Special Sensor Microwave Imager (SSM/I), May 1994 for Microwave Sounding Unit (MSU), and January 1996 for atolls] have implications in the behavior of the two datasets. Several abrupt changes identified in the statistics of the two datasets including the changes in overocean precipitation, spatial correlation time series, and some of the EOF principal components, can be related to one or more input data changes.
Abstract
The two monthly precipitation products of the Global Precipitation Climatology Project (GPCP) and the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) are compared on a 23-yr period, January 1979–December 2001. For the long-term mean, major precipitation patterns are clearly demonstrated by both products, but there are differences in the pattern magnitudes. In the tropical ocean the CMAP is higher than the GPCP, but this is reversed in the high-latitude ocean. The GPCP–CMAP spatial correlation is generally higher over land than over the ocean. The correlation between the global mean oceanic GPCP and CMAP is significantly low. It is very likely because the input data of the two products have much less in common over the ocean; in particular, the use of atoll data by the CMAP is disputable. The decreasing trend in the CMAP oceanic precipitation is found to be an artifact of input data change and atoll sampling error. In general, overocean precipitation represented by the GPCP is more reasonable; over land the two products are close, but different merging algorithms between the GPCP and the CMAP can sometimes produce substantial discrepancy in sensitive areas such as equatorial West Africa. EOF analysis shows that the GPCP and the CMAP are similar in 6 out of the first 10 modes, and the first 2 leading modes (ENSO patterns) of the GPCP are nearly identical to their counterparts of the CMAP. Input data changes [e.g., January 1986 for Geostationary Operational Environmental Satellite (GOES) precipitation index (GPI), July 1987 for Special Sensor Microwave Imager (SSM/I), May 1994 for Microwave Sounding Unit (MSU), and January 1996 for atolls] have implications in the behavior of the two datasets. Several abrupt changes identified in the statistics of the two datasets including the changes in overocean precipitation, spatial correlation time series, and some of the EOF principal components, can be related to one or more input data changes.
Abstract
The Global Precipitation Climatology Project (GPCP) Version-2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5° latitude × 2.5° longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, and surface rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The dataset is extended back into the premicrowave era (before mid-1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the rain gauge analysis. The dataset archive also contains the individual input fields, a combined satellite estimate, and error estimates for each field. This monthly analysis is the foundation for the GPCP suite of products, including those at finer temporal resolution. The 23-yr GPCP climatology is characterized, along with time and space variations of precipitation.
Abstract
The Global Precipitation Climatology Project (GPCP) Version-2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5° latitude × 2.5° longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, and surface rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The dataset is extended back into the premicrowave era (before mid-1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the rain gauge analysis. The dataset archive also contains the individual input fields, a combined satellite estimate, and error estimates for each field. This monthly analysis is the foundation for the GPCP suite of products, including those at finer temporal resolution. The 23-yr GPCP climatology is characterized, along with time and space variations of precipitation.