Search Results

You are looking at 1 - 10 of 27 items for :

  • Author or Editor: Axel Timmermann x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Oliver Timm
and
Axel Timmermann

Abstract

The earth system model of intermediate complexity ECBilt-CLIO has been used for transient simulations of the last deglaciation and the Holocene. The forcing effects of the ice sheets, greenhouse gas concentrations, and orbital configurations are prescribed as time-varying boundary conditions. In this study two key aspects of the transient simulations are investigated, which are of broader relevance for long-term transient paleoclimate modeling: the effect of using accelerated boundary conditions and of uncertainties in the initial state. Simulations with nonaccelerated boundary conditions and an acceleration factor 10 were integrated. These simulations show that the acceleration can have a significant impact on the local climate history. In the outcropping regions of the high southern latitudes and the convective regions in the North Atlantic, the acceleration leads to damped and delayed temperature response to the boundary conditions. Furthermore, uncertainties in the initial state can strongly bias the climate trajectories in these areas over 500–700 model years. The affected oceanic regions are connected to the large heat capacities of the interior ocean, which cause a strong delay in the response to the forcing. Despite the shown difficulties with the acceleration technique, the accelerated simulations still reproduce the large-scale trend pattern of air temperatures during the Holocene from previous simulations with different models. The accelerated transient model simulation is compared with existing proxy time series at specific sites. The simulation results are in good agreement with those paleoproxies. It is shown that the transient simulations provide valuable insight into whether seasonal or annual signals are recorded in paleoproxies.

Full access
Shayne McGregor
and
Axel Timmermann

Abstract

This study examines the response of El Niño–Southern Oscillation (ENSO) to massive volcanic eruptions in a suite of coupled general circulation model (CGCM) simulations utilizing the Community Climate System Model, version 3 (CCSM3). The authors find that the radiative forcing due to volcanic aerosols injected into the stratosphere induces a model climatic response that projects onto the ENSO mode and initially creates a La Niña event that peaks around the time the volcanic forcing peaks. The curl of the wind stress changes accompanying this volcanically forced equatorial region cooling acts to recharge the equatorial region heat. For weaker volcanic eruptions, this recharging results in an El Niño event about two seasons after the peak of the volcanic forcing. The results of the CCSM3 volcanic forcing experiments lead the authors to propose that the initial tropical Pacific Ocean response to volcanic forcing is determined by four different mechanisms—one process is the dynamical thermostat mechanism (the mean upwelling of anomalous temperature) and the other processes are related to the zonal equatorial gradients of the mean cloud albedo, Newtonian cooling, and mixed layer depth. The zonal gradient in CCSM3 set by both mixed layer depth and Newtonian cooling terms oppose the zonal sea surface temperature anomaly (SSTA) gradient produced by the dynamical thermostat and initially dominate the mixed layer zonal equatorial heat budget response. Applying this knowledge to a simple volcanically forced mixed layer equation using observed estimates of the spatially varying variables, the authors again find that the mixed layer depth and Newtonian cooling terms oppose and dominate the zonal SSTA gradient produced by the dynamical thermostat. This implies that the observed initial response to volcanic forcing should be La Niña–like not El Niño, as suggested by paleoclimate records.

Full access
Kyung-Sook Yun
and
Axel Timmermann

Abstract

Several climate field reconstruction methods assume stationarity between the leading patterns of variability identified during the instrumental calibration period and the reconstruction period. We examine how and to what extent this restrictive assumption may generate uncertainties in reconstructing past tropical Pacific climate variability. Based on the Last Millennium (850–2005 CE) ensemble simulations conducted with the Community Earth System Model and by developing a series of pseudoproxy reconstructions for different calibration periods, we find that the overall reconstruction skill for global and more regional-scale climate indices depends significantly on the magnitude of externally forced global mean temperature variability during the chosen calibration period. This effect strongly reduces the fidelity of reconstructions of decadal to centennial-scale tropical climate variability, associated with the interdecadal Pacific oscillation (IPO) and centennial-scale temperature shifts between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). In contrast, our pseudoproxy-based analysis demonstrates that reconstructions of interannual El Niño–Southern Oscillation (ENSO) variability are more robust and less affected by changes in calibration period.

Full access
Oliver Timm
,
Peter Köhler
,
Axel Timmermann
, and
Laurie Menviel

Abstract

The mechanisms leading to the onset of the African Humid Period (AHP) 14 500–11 000 yr ago are elucidated using two different climate–vegetation models in a suite of transient glacial–interglacial simulations covering the last 21 000 yr. A series of sensitivity experiments investigated three key mechanisms (local summer insolation and ice sheet evolution, vegetation–albedo–precipitation feedback, and CO2 increase via radiative forcing and fertilization) that control the climate–vegetation history over North Africa during the last glacial termination. The simulations showed that neither orbital forcing nor the remote forcing from the retreating ice sheets alone was able to trigger the rapid formation of the AHP. Only both forcing factors together can effectively lead to the formation of the AHP. The vegetation–albedo–precipitation feedback enhances the intensity of the monsoon and further accelerates the onset of the AHP. The experiments indicate that orbital forcing and vegetation–albedo–precipitation feedback alone are insufficient to trigger the rapid onset of the AHP. The sensitivity experiments further show that the increasing radiative forcing from rising CO2 concentrations had no significant impact on the temporal evolution of the African monsoon during the last deglaciation. However, the fertilization effect of CO2 is important for the terrestrial carbon storage. The modeling results are discussed and compared with paleoproxy records of the African monsoon system. It is concluded that the model results presented here do not lend support to the notion that simple insolation thresholds govern the abrupt transitions of North African vegetation during the early to middle Holocene.

Full access
Axel Timmermann
,
Oliver Timm
,
Lowell Stott
, and
Laurie Menviel

Abstract

Transient climate model simulations covering the last 21 000 yr reveal that orbitally driven insolation changes in the Southern Hemisphere, combined with a rise in atmospheric pCO2, were sufficient to jump-start the deglacial warming around Antarctica without direct Northern Hemispheric triggers. Analyses of sensitivity experiments forced with only one external forcing component (greenhouse gases, ice-sheet forcing, or orbital forcing) demonstrate that austral spring insolation changes triggered an early retreat of Southern Ocean sea ice starting around 19–18 ka BP. The associated sea ice–albedo feedback and the subsequent increase of atmospheric CO2 concentrations helped to further accelerate the deglacial warming in the Southern Hemisphere. Implications for the interpretation of Southern Hemispheric paleoproxy records are discussed.

Full access
Axel Timmermann
,
Shayne McGregor
, and
Fei-Fei Jin

Abstract

Global sea level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice sheets is threatening to inundate low-lying islands and coastlines worldwide. At present the global mean sea level rises at 3.1 ± 0.7 mm yr−1 with an accelerating tendency. However, the magnitude of recent decadal sea level trends varies greatly spatially, attaining values of up to 10 mm yr−1 in some areas of the western tropical Pacific. Identifying the causes of recent regional sea level trends and understanding the patterns of future projected sea level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, the study shows that the regional features of recent decadal and multidecadal sea level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind regimes. Furthermore, it is demonstrated that within an ensemble of 10 state-of-the-art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced redistributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea level rise. Wind-related changes in near-surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands, and French Polynesia oppose—but cannot cancel—the regional signal of global mean sea level rise.

Full access
Axel Timmermann
,
Hezi Gildor
,
Michael Schulz
, and
Eli Tziperman

Abstract

The role of mean and stochastic freshwater forcing on the generation of millennial-scale climate variability in the North Atlantic is studied using a low-order coupled atmosphere–ocean–sea ice model. It is shown that millennial-scale oscillations can be excited stochastically, when the North Atlantic Ocean is fresh enough. This finding is used in order to interpret the aftermath of massive iceberg surges (Heinrich events) in the glacial North Atlantic, which are characterized by an excitation of Dansgaard–Oeschger events. Based on model results, it is hypothesized that Heinrich events trigger Dansgaard–Oeschger cycles and that furthermore the occurrence of Heinrich events is dependent on the accumulated climatic effect of a series of Dansgaard–Oeschger events. This scenario leads to a coupled ocean–ice sheet oscillation that shares many similarities with the Bond cycle. Further sensitivity experiments reveal that the timescale of the oscillations can be decomposed into stochastic, linear, and nonlinear deterministic components. A schematic bifurcation diagram is used to compare theoretical results with paleoclimatic data.

Full access
Thomas F. Stocker
,
Axel Timmermann
,
Manuel Renold
, and
Oliver Timm

Abstract

Freshwater hosing experiments with a comprehensive coupled climate model and a coupled model of intermediate complexity are performed with and without global salt compensation in order to investigate the robustness of the bipolar seesaw. In both cases, a strong reduction of the Atlantic meridional overturning circulation is induced, and a warming in the South Atlantic results. When a globally uniform salt flux is applied at the surface in order to keep the global mean salinity constant, this causes additional widespread warming in the Southern Ocean. It is shown that this warming is mainly due to heat transport anomalies that are induced by the specific parameterization in ocean models to represent eddy mixing. Surface salt fluxes tend to move outcropping isopycnals equatorward. As the density perturbation originates at the surface, changes in isopycnal slopes are generated that lead to anomalies in the bolus velocity field. The associated bolus heat flux convergence creates a warming enhancing the bipolar seesaw response, particularly in the Southern Ocean. The importance of this mechanism is illustrated in coupled model simulations in which this parameterization in the ocean model component is switched on or off. Additional experiments in which the same total amount of freshwater is delivered at rates 10 times smaller show that the effect of the global salt compensation is not important in this case, but that the eddy-mixing parameterization is still responsible for a substantial temperature response in the Southern Ocean.

Full access
Samantha Stevenson
,
Axel Timmermann
,
Yoshimitsu Chikamoto
,
Sally Langford
, and
Pedro DiNezio

Abstract

The importance of interannual-to-decadal sea surface temperature (SST) influences on drought in the United States is examined using a suite of simulations conducted with the T31×3 resolution version of the NCAR Community Earth System Model (CESM1.0.3). The model captures tropical Pacific teleconnections to North American precipitation reasonably well, although orographic features are somewhat enhanced at higher resolution. The contribution of SST anomalies is isolated by comparing two idealized, 1000-yr CESM1.0.3 experiments: a fully coupled control and an atmosphere-only (CAM4) run forced with the SST climatology from the control. Droughts are identified using the Palmer Drought Severity Index (PDSI), which is computed over four U.S. regions from the CESM1.0.3 experiments and compared with the North American Drought Atlas (NADA). The CESM1.0.3 reproduces the persistence of NADA droughts quite well, although the model underestimates drought severity. Within the CESM1.0.3 framework, SST forcing does not significantly affect drought intensity or frequency of occurrence, even for very persistent “megadroughts” of 15 yr or more in length. In both the CESM1.0.3 and NADA, with the exception of the Southeast United States, droughts in all regions have intensities, persistence lengths, and occurrence frequencies statistically consistent with a red noise null hypothesis. This implies that SST forcing is not the dominant factor in generating drought and therefore that many decadal megadroughts are caused by a combination of internal atmospheric variability and coupling with the land surface, with SST anomalies playing only a secondary role.

Full access
Malte F. Stuecker
,
Fei-Fei Jin
,
Axel Timmermann
, and
Shayne McGregor

Abstract

Nonlinear interactions between ENSO and the western Pacific warm pool annual cycle generate an atmospheric combination mode (C-mode) of wind variability. The authors demonstrate that C-mode dynamics are responsible for the development of an anomalous low-level northwest Pacific anticyclone (NWP-AC) during El Niño events. The NWP-AC is embedded in a large-scale meridionally antisymmetric Indo-Pacific atmospheric circulation response and has been shown to exhibit large impacts on precipitation in Asia. In contrast to previous studies, the authors find the role of air–sea coupling in the Indian Ocean and northwestern Pacific only of secondary importance for the NWP-AC genesis. Moreover, the NWP-AC is clearly marked in the frequency domain with near-annual combination tones, which have been overlooked in previous Indo-Pacific climate studies. Furthermore, the authors hypothesize a positive feedback loop involving the anomalous low-level NWP-AC through El Niño and C-mode interactions: the development of the NWP-AC as a result of the C-mode acts to rapidly terminate El Niño events. The subsequent phase shift from retreating El Niño conditions toward a developing La Niña phase terminates the low-level cyclonic circulation response in the central Pacific and thus indirectly enhances the NWP-AC and allows it to persist until boreal summer. Anomalous local circulation features in the Indo-Pacific (e.g., the NWP-AC) can be considered a superposition of the quasi-symmetric linear ENSO response and the meridionally antisymmetric annual cycle modulated ENSO response (C-mode). The authors emphasize that it is not adequate to assess ENSO impacts by considering only interannual time scales. C-mode dynamics are an essential (extended) part of ENSO and result in a wide range of deterministic high-frequency variability.

Full access