Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Ayrton Zadra x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Ayrton Zadra
,
Gilbert Brunet
, and
Jacques Derome

Abstract

A diagnostic algorithm, based on the empirical normal mode decomposition technique, is proposed as a diagnostic tool in studies of the atmospheric variability. It begins by analyzing the transient eddies in terms of empirical modes that are orthogonal with respect to wave activities. Time-dependent amplitudes together with wave activity spectra are used to classify the modes and compute their propagation properties.

The algorithm is applied to a sequence of four Northern Hemisphere winters taken from the National Centers for Environmental Prediction reanalyses, with a focus on the upper troposphere and lower stratosphere, giving a set of empirical modes of wind, pressure, specific volume, and potential vorticity. Results indicate that most of the wave activity is carried by large-scale, eastward-propagating modes centered at middle and high latitudes. Some properties of the leading modes, such as their average phase speeds, are in good agreement with the predictions of linear dynamics.

Characteristics of the leading wavenumber-5 mode, such as its dipolar pressure pattern near the summer hemisphere tropopause, its propagation speed of 12 m s−1 and decay rate of 3 days, can be explained by the theory of quasi modes, defined as superpositions of singular modes sharply peaked in the phase speed domain. Other large-scale, midlatitude modes also show properties compatible with the quasi-modal description, suggesting that quasi modes play an important role in the upper-troposphere dynamics.

Full access
Ayrton Zadra
,
Gilbert Brunet
,
Jacques Derome
, and
Bernard Dugas

Abstract

An algorithm based on the empirical normal mode analysis is used in a comparative study of the climatology and variability in dynamical-core experiments of the Global Environmental Multiscale model. The algorithm is proposed as a means to assess properties of the model's dynamical core and to establish objective criteria for model intercomparison studies. In this paper, the analysis is restricted to the upper troposphere and lower stratosphere. Two dynamical-core experiments are considered: one with the forcing proposed by Held and Suarez, later modified by Williamson et al. (called HSW experiment), and the other with a forcing inspired by the prescriptions of Boer and Denis (BD). Results are also compared with those of an earlier diagnosis of NCEP reanalyses. Normal modes and wave-activity spectra are similar to those found in the reanalysis data, although details depend on the forcing. For instance, wave-energy amplitudes are higher with the BD forcing, and an approximate energy equipartition is observed in the spectrum of wavenumber-1 modes in the NCEP data and the BD experiment but not in the HSW experiment. The HSW forcing has a relatively strong relaxation acting on the complete temperature field, whereas the BD forcing only acts on the zonal-mean temperature, letting the internal dynamics alone drive the wave-activity spectral cascade. This difference may explain why the BD forcing is more successful in reproducing the observed wave activity in the upper troposphere and lower stratosphere.

Full access
Frédérick Chosson
,
Paul A. Vaillancourt
,
Jason A. Milbrandt
,
M. K. Yau
, and
Ayrton Zadra

Abstract

Two-moment multiclass microphysics schemes are very promising tools to be used in high-resolution NWP models. However, they must be adapted for coarser resolutions. Here, a twofold solution is proposed—namely, a simple representation of subgrid cloud and precipitation fraction—as well as a microphysical sub-time-stepping method. The scheme is easy to implement, allows supersaturation in ice cloud, and exhibits flexibility for adoption across model grid spacing. It is implemented in the Milbrandt and Yau two-moment microphysics scheme with prognostic precipitation in the context of a simple 1D kinematic model as well as a mesoscale NWP model [the Canadian regional Global Environmental Multiscale model (GEM)]. Sensitivity tests were performed and the results highlighting the advantages and disadvantages of the two-moment multiclass cloud scheme relative to the classical Sundqvist scheme. The respective roles of subgrid cloud fraction, precipitation fraction, and time splitting were also studied. When compared to the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/CloudSat-retrieved cloud mask, cloud fraction, and ice water content, it is found that the proposed solutions significantly improve the behavior of the Milbrandt and Yau microphysics scheme at the regional NWP scale, suggesting that the subgrid cloud and precipitation fraction technique can be used across model resolutions.

Full access