Search Results
Abstract
Using the data obtained from the Advanced Very High Resolution Radiometer (AVHRR) 3.7-µm and 10.9-µm channels, a retrieval scheme has been developed to simultaneously infer cirrus cloud optical depth and mean effective ice crystal size based on the theory of radiative transfer and parameterizations. A numerical scheme is further developed to remove the solar component in the 3.7-µm radiance for applications to daytime satellite data. This scheme is based on the correlation between the 3.7-µm (solar) and 0.63-µm reflectances. Validation of the algorithm has been performed by using various datasets that were collected during the FIRE-II IFO (Nov-Dec 1991) at Coffeyville, Kansas. We have focused on the 26 November and 5 December cases. The retrieval analysis over a 0.5°×1.0° area is performed around Coffeyville for each case based on AVHRR-HRPT data. For validation the authors analyze the photomicrograph data collected by the balloonborne replicator, determine the microphysical and optical properties of the sampled cirrus clouds, and derive their position at the satellite overpass based on sounding data. It is demonstrated that the retrieved cirrus cloud temperature, mean effective ice crystal size, and optical depth closely match the observed values. Further, the retrieved cirrus cloud properties are applied to the computation of surface radiative fluxes using a radiative transfer program that involves a consistent representation of cirrus cloud fields. The computed values are compared with the data measured from ground-based radiometers, and it is shown that the computed downward surface IR and solar fluxes are within 5 and 10 W m−2 of the measured values, respectively, near the time of satellite overpass.
Abstract
Using the data obtained from the Advanced Very High Resolution Radiometer (AVHRR) 3.7-µm and 10.9-µm channels, a retrieval scheme has been developed to simultaneously infer cirrus cloud optical depth and mean effective ice crystal size based on the theory of radiative transfer and parameterizations. A numerical scheme is further developed to remove the solar component in the 3.7-µm radiance for applications to daytime satellite data. This scheme is based on the correlation between the 3.7-µm (solar) and 0.63-µm reflectances. Validation of the algorithm has been performed by using various datasets that were collected during the FIRE-II IFO (Nov-Dec 1991) at Coffeyville, Kansas. We have focused on the 26 November and 5 December cases. The retrieval analysis over a 0.5°×1.0° area is performed around Coffeyville for each case based on AVHRR-HRPT data. For validation the authors analyze the photomicrograph data collected by the balloonborne replicator, determine the microphysical and optical properties of the sampled cirrus clouds, and derive their position at the satellite overpass based on sounding data. It is demonstrated that the retrieved cirrus cloud temperature, mean effective ice crystal size, and optical depth closely match the observed values. Further, the retrieved cirrus cloud properties are applied to the computation of surface radiative fluxes using a radiative transfer program that involves a consistent representation of cirrus cloud fields. The computed values are compared with the data measured from ground-based radiometers, and it is shown that the computed downward surface IR and solar fluxes are within 5 and 10 W m−2 of the measured values, respectively, near the time of satellite overpass.
Abstract
The goals of the current study are threefold: 1) to present a multispectral, multiresolution (MSMR) methodology for analysis of scenes containing multiple cloud layers; 2) to apply the MSMR method to two multilevel cloud scenes recorded by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the High Resolution Infrared Radiometer Sounder (HIRS/2) instruments during the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE) on 28 November 1991; and 3) to validate the cloud-top height results from the case study analyses through comparison with lidar, radar, aircraft and rawin-sonde data. The measurements available from FIRE Cirrus II enable detailed examination of two complex cloud scenes in which cirrus and stratus appear simultaneously.
A “fuzzy logic” classification system is developed to determine whether a 32×32 array of AVHRR data contains clear sky, low-level cloud, midlevel cloud, high-level cloud, or multiple cloud layers. With the addition of the fray logic cloud classification system, it is possible for the first time to find evidence of more than one cloud layer within each HMS field of view. Low cloud heights are determined through application of the spatial coherence method to the AVHRR data, while mid- to high-level cloud heights are calculated from the HIRS/2 15-µm CO2 band radiometric data that are collocated with the AVHRR data. Cirrus cloud heights retrieved from HIRS 15-µm CO2 band data are improved for optically thin cirrus through the use of the upper-tropospheric humidity profile. The MSMR-derived cloud heights are consistent with coincident lidar, radar, and aircraft data. Cirrus and stratus cloud-top heights and cirrus effective emittances are retrieved for data within an ISCCP 2.5° grid cell that encompasses the FIRE experimental region.
Abstract
The goals of the current study are threefold: 1) to present a multispectral, multiresolution (MSMR) methodology for analysis of scenes containing multiple cloud layers; 2) to apply the MSMR method to two multilevel cloud scenes recorded by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the High Resolution Infrared Radiometer Sounder (HIRS/2) instruments during the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE) on 28 November 1991; and 3) to validate the cloud-top height results from the case study analyses through comparison with lidar, radar, aircraft and rawin-sonde data. The measurements available from FIRE Cirrus II enable detailed examination of two complex cloud scenes in which cirrus and stratus appear simultaneously.
A “fuzzy logic” classification system is developed to determine whether a 32×32 array of AVHRR data contains clear sky, low-level cloud, midlevel cloud, high-level cloud, or multiple cloud layers. With the addition of the fray logic cloud classification system, it is possible for the first time to find evidence of more than one cloud layer within each HMS field of view. Low cloud heights are determined through application of the spatial coherence method to the AVHRR data, while mid- to high-level cloud heights are calculated from the HIRS/2 15-µm CO2 band radiometric data that are collocated with the AVHRR data. Cirrus cloud heights retrieved from HIRS 15-µm CO2 band data are improved for optically thin cirrus through the use of the upper-tropospheric humidity profile. The MSMR-derived cloud heights are consistent with coincident lidar, radar, and aircraft data. Cirrus and stratus cloud-top heights and cirrus effective emittances are retrieved for data within an ISCCP 2.5° grid cell that encompasses the FIRE experimental region.