Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: B. L. Li x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Eun-Han Kwon
,
B. J. Sohn
,
William L. Smith
, and
Jun Li

Abstract

Temperature and moisture profiles retrieved from Infrared Atmospheric Sounding Interferometer (IASI) data are evaluated using collocated radiosonde data from September 2008 to August 2009 over East Asia. The level-2 products used in this study were provided by the National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service. By using radiosonde observations as a reference, the bias and root-mean-square error (RMSE) of the temperature and water vapor profiles are obtained to examine the performance of the IASI retrievals depending on surface types and the degree of atmospheric moisture. Overall, retrievals over the land or under drier atmospheric conditions show degraded performance for both the temperature and the moisture, especially for the boundary layer temperature. It is further shown that the vertical distributions of the RMSEs and the biases of the IASI retrievals resemble the variability pattern of the radiosonde observations from the mean profiles. These retrieval aspects are thought to be related to the surface emissivity effect on the IASI retrieval and the difficulties of accounting for large atmospheric variability in the retrieval process. Although the retrieval performance appears to degrade under cloudy conditions, cloudy- and clear-sky retrievals show similar statistical behaviors varying with surface type and atmospheric moisture. Furthermore, the similar statistical behaviors between first guess and final retrievals suggest that error characteristics inherent to the first guess were not sufficiently resolved by the physical retrieval process, leaving a need to improve the first guess for the better retrieval.

Full access
William B. Willis
,
William E. Eichinger
,
John H. Prueger
,
Cathleen J. Hapeman
,
Hong Li
,
Michael D. Buser
,
Jerry L. Hatfield
,
John D. Wanjura
,
Gregory A. Holt
,
Alba Torrents
,
Sean J. Plenner
,
Warren Clarida
,
Stephen D. Browne
,
Peter M. Downey
, and
Qi Yao

Abstract

Pollutant emissions to the atmosphere commonly derive from nonpoint sources that are extended in space. Such sources may contain area, volume, line, or a combination of emission types. Currently, point measurements, often combined with models, are the primary means by which atmospheric emission rates are estimated from extended sources. Point measurement arrays often lack in spatial and temporal resolution and accuracy. In recent years, lidar has supplemented point measurements in agricultural research by sampling spatial ensembles nearly instantaneously. Here, a methodology using backscatter data from an elastic scanning lidar is presented to estimate emission rates from extended sources. To demonstrate the approach, a known amount of particulate matter was released upwind of a vegetative environmental buffer, a barrier designed to intercept emissions from animal production facilities. The emission rate was estimated downwind of the buffer, and the buffer capture efficiency (percentage of particles captured) was calculated. Efficiencies ranged from 21% to 74% and agree with the ranges previously published. A comprehensive uncertainty analysis of the lidar methodology was performed, revealing an uncertainty of 20% in the emission rate estimate; suggestions for significantly reducing this uncertainty in future studies are made. The methodology introduced here is demonstrated by estimating the efficiency of a vegetative buffer, but it can also be applied to any extended emission source for which point samples are inadequate, such as roads, animal feedlots, and cotton gin operations. It can also be applied to any pollutant for which a lidar system is configured, such as particulate matter, carbon dioxide, and ammonia.

Full access