Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: B. Stankov x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
A new method, Multisensor Retrieval of Atmospheric Properties (MRAP), is presented for deriving vertical profiles of atmospheric parameters throughout the troposphere. MRAP integrates measurements from multiple, diverse, remote sensing, and in situ instruments, the combination of which provides better capabilities than any instrument alone. Since remote sensors can deliver measurements automatically and continuously with high time resolution, MRAP provides better coverage than traditional rawinsondes. MRAP's design is flexible, being capable of incorporating measurements from different instruments in order to take advantage of new or developing advanced sensor technology. Furthermore, new or alternative atmospheric parameters for a variety of applications may be easily added as products of MRAP.
A combination of passive radiometric, active radar, and in situ observations provide the best temperature and humidity profile measurements. Therefore, MRAP starts with a traditional, radiometer-based, physical retrieval algorithm provided by the International TOVS (TIROS-N Operational Vertical Sounder) Processing Package (ITPP) that constrains the retrieved profiles to agree with brightness temperature measurements. The first-guess profiles required by the ITPP's iterative retrieval algorithm are obtained by using a statistical inversion technique and ground-based remote sensing measurements. Because the individual ground-based remote sensing measurements are usually of sufficiently high quality, the first-guess profiles by themselves provide a satisfactory solution to establish the atmospheric water vapor and temperature state, and the TOVS data are included to provide profiles with better accuracy at higher levels, MRAP provides a physically consistent mechanism for combining the ground- and space-based humidity and temperature profiles.
Data that have been used successfully to retrieve humidity and temperature profiles with MRAP are the following: temperature profiles in the lower troposphere from the ground-based Radio Acoustic Sounding System (RASS); total water vapor measurements from the Global Positioning System; specific humidity gradient profiles from the wind-profiling radar/RASS system; surface meteorological observations from standard instruments; cloud-base heights from a lidar ceilometer; temperature from the Aeronautical Radio, Incorporated Communication, Addressing and Reporting System aboard commercial airlines; and brightness temperature observations from TOVS.
Data from the experiment conducted in the late summer of 1995 at Point Loma, California, were used for comparisons of MRAP results and 20 nearby rawinsonde releases to assess the statistical error estimates of MRAP. The temperature profiles had a bias of −0.27°C and a standard deviation of 1.56°C for the entire troposphere. Dewpoint profile retrievals did not have an overall accuracy as high as that of the temperature profiles but they exhibited a markedly improved standard deviation and bias in the lower atmosphere when the wind profiler/RASS specific humidity gradient information was available as a further constraint on the process. The European Centre for Medium-Range Weather Forecasts (ECMWF) model profiles of humidity and temperature for the grid point nearest to the Point Loma site were also used for comparison with the rawinsonde soundings to establish the usefulness of MRAP profiles to the weather forecasting community. The comparison showed that the vertical resolution of the ECMWF model profiles within the planetary boundary layer is not capable of detecting sharp gradients.
A new method, Multisensor Retrieval of Atmospheric Properties (MRAP), is presented for deriving vertical profiles of atmospheric parameters throughout the troposphere. MRAP integrates measurements from multiple, diverse, remote sensing, and in situ instruments, the combination of which provides better capabilities than any instrument alone. Since remote sensors can deliver measurements automatically and continuously with high time resolution, MRAP provides better coverage than traditional rawinsondes. MRAP's design is flexible, being capable of incorporating measurements from different instruments in order to take advantage of new or developing advanced sensor technology. Furthermore, new or alternative atmospheric parameters for a variety of applications may be easily added as products of MRAP.
A combination of passive radiometric, active radar, and in situ observations provide the best temperature and humidity profile measurements. Therefore, MRAP starts with a traditional, radiometer-based, physical retrieval algorithm provided by the International TOVS (TIROS-N Operational Vertical Sounder) Processing Package (ITPP) that constrains the retrieved profiles to agree with brightness temperature measurements. The first-guess profiles required by the ITPP's iterative retrieval algorithm are obtained by using a statistical inversion technique and ground-based remote sensing measurements. Because the individual ground-based remote sensing measurements are usually of sufficiently high quality, the first-guess profiles by themselves provide a satisfactory solution to establish the atmospheric water vapor and temperature state, and the TOVS data are included to provide profiles with better accuracy at higher levels, MRAP provides a physically consistent mechanism for combining the ground- and space-based humidity and temperature profiles.
Data that have been used successfully to retrieve humidity and temperature profiles with MRAP are the following: temperature profiles in the lower troposphere from the ground-based Radio Acoustic Sounding System (RASS); total water vapor measurements from the Global Positioning System; specific humidity gradient profiles from the wind-profiling radar/RASS system; surface meteorological observations from standard instruments; cloud-base heights from a lidar ceilometer; temperature from the Aeronautical Radio, Incorporated Communication, Addressing and Reporting System aboard commercial airlines; and brightness temperature observations from TOVS.
Data from the experiment conducted in the late summer of 1995 at Point Loma, California, were used for comparisons of MRAP results and 20 nearby rawinsonde releases to assess the statistical error estimates of MRAP. The temperature profiles had a bias of −0.27°C and a standard deviation of 1.56°C for the entire troposphere. Dewpoint profile retrievals did not have an overall accuracy as high as that of the temperature profiles but they exhibited a markedly improved standard deviation and bias in the lower atmosphere when the wind profiler/RASS specific humidity gradient information was available as a further constraint on the process. The European Centre for Medium-Range Weather Forecasts (ECMWF) model profiles of humidity and temperature for the grid point nearest to the Point Loma site were also used for comparison with the rawinsonde soundings to establish the usefulness of MRAP profiles to the weather forecasting community. The comparison showed that the vertical resolution of the ECMWF model profiles within the planetary boundary layer is not capable of detecting sharp gradients.
Several ground-based remote sensors were operated together in Colorado during February and March 1991 to obtain continuous profiles of the kinematic and thermodynamic structure of the atmosphere. Instrument performance is compared for five different wind profilers. Each was equipped with Radio Acoustic Sounding System (RASS) capability to measure virtual temperature. This was the first side-by-side comparison of all three of the most common wind-profiler frequencies: 50, 404, and 915 MHz. The 404-MHz system was a NOAA Wind Profiler Demonstration Network (WPDN) unit. Dual-frequency microwave radiometers that measured path-integrated water vapor and liquid water content were also evaluated. Frequent rawinsonde launches from the remote-sensor sites provided an extensive set of in situ measurements for comparison. The winter operations provide a severe test of the profiler/RASS capabilities because atmospheric scattering is relatively weak and acoustic attenuation is relatively strong in cold, dry conditions. Nevertheless, the lower-frequency systems exhibited impressive height coverage for wind and virtual temperature profiling, whereas the high-frequency units provided higher-resolution measurements near the surface. Comparisons between remote sensor and rawinsonde data generally showed excellent agreement. The results support more widespread use of these emerging technologies.
Several ground-based remote sensors were operated together in Colorado during February and March 1991 to obtain continuous profiles of the kinematic and thermodynamic structure of the atmosphere. Instrument performance is compared for five different wind profilers. Each was equipped with Radio Acoustic Sounding System (RASS) capability to measure virtual temperature. This was the first side-by-side comparison of all three of the most common wind-profiler frequencies: 50, 404, and 915 MHz. The 404-MHz system was a NOAA Wind Profiler Demonstration Network (WPDN) unit. Dual-frequency microwave radiometers that measured path-integrated water vapor and liquid water content were also evaluated. Frequent rawinsonde launches from the remote-sensor sites provided an extensive set of in situ measurements for comparison. The winter operations provide a severe test of the profiler/RASS capabilities because atmospheric scattering is relatively weak and acoustic attenuation is relatively strong in cold, dry conditions. Nevertheless, the lower-frequency systems exhibited impressive height coverage for wind and virtual temperature profiling, whereas the high-frequency units provided higher-resolution measurements near the surface. Comparisons between remote sensor and rawinsonde data generally showed excellent agreement. The results support more widespread use of these emerging technologies.
Field studies in support of the Winter Icing and Storms Project (WISP) were conducted in the Colorado Front Range area from 1 February to 31 March 1990 (WISP90) and from 15 January to 5 April 1991 (WISP91). The main goals of the project are to study the processes leading to the formation and depletion of supercooled liquid water in winter storms and to improve forecasts of aircraft icing. During the two field seasons, 2 research aircraft, 4 Doppler radars, 49 Mesonet stations, 7 CLASS sounding systems, 3 microwave radiometers, and a number of other facilities were deployed in the Front Range area. A comprehensive dataset was obtained on 8 anticyclonic storms, 16 cyclonic storms, and 9 frontal passages.
This paper describes the objectives of the experiment, the facilities employed, the goals and results of a forecasting exercise, and applied research aspects of WISP. Research highlights are presented for several studies under way to illustrate the types of analysis being pursued. The examples chosen include topics on anticyclonic upslope storms, heavy snowfall, large droplets, shallow cold fronts, ice crystal formation and evolution, and numerical model performance.
Field studies in support of the Winter Icing and Storms Project (WISP) were conducted in the Colorado Front Range area from 1 February to 31 March 1990 (WISP90) and from 15 January to 5 April 1991 (WISP91). The main goals of the project are to study the processes leading to the formation and depletion of supercooled liquid water in winter storms and to improve forecasts of aircraft icing. During the two field seasons, 2 research aircraft, 4 Doppler radars, 49 Mesonet stations, 7 CLASS sounding systems, 3 microwave radiometers, and a number of other facilities were deployed in the Front Range area. A comprehensive dataset was obtained on 8 anticyclonic storms, 16 cyclonic storms, and 9 frontal passages.
This paper describes the objectives of the experiment, the facilities employed, the goals and results of a forecasting exercise, and applied research aspects of WISP. Research highlights are presented for several studies under way to illustrate the types of analysis being pursued. The examples chosen include topics on anticyclonic upslope storms, heavy snowfall, large droplets, shallow cold fronts, ice crystal formation and evolution, and numerical model performance.
During the week 29 October–4 November 1988, a Ground-based Atmospheric Profiling Experiment (GAPEX) was conducted at Denver Stapleton International Airport. The objective of GAPEX was to acquire and analyze atomspheric-temperature and moisture-profile data from state-of-the-art remote sensors. The sensors included a six-spectral-channel, passive Microwave Profiler (MWP), a passive, infrared High-Resolution Interferometer Sounder (HIS) that provides more than 1500 spectral channels, and an active Radio Acoustic Sounding System (RASS). A Cross-Chain Loran Atmospheric Sounding System (CLASS) was used to provide research-quality in situ thermodynamic observations to verify the accuracy and resolution characteristics of each of the three remote sensors. The first results of the project are presented here to inform the meteorological community of the progress achieved during the GAPEX field phase. These results also serve to demonstrate the excellent prospects for an accurate, continuous thermodynamic profiling system to complement NOAA's forthcoming operational wind profiler.
During the week 29 October–4 November 1988, a Ground-based Atmospheric Profiling Experiment (GAPEX) was conducted at Denver Stapleton International Airport. The objective of GAPEX was to acquire and analyze atomspheric-temperature and moisture-profile data from state-of-the-art remote sensors. The sensors included a six-spectral-channel, passive Microwave Profiler (MWP), a passive, infrared High-Resolution Interferometer Sounder (HIS) that provides more than 1500 spectral channels, and an active Radio Acoustic Sounding System (RASS). A Cross-Chain Loran Atmospheric Sounding System (CLASS) was used to provide research-quality in situ thermodynamic observations to verify the accuracy and resolution characteristics of each of the three remote sensors. The first results of the project are presented here to inform the meteorological community of the progress achieved during the GAPEX field phase. These results also serve to demonstrate the excellent prospects for an accurate, continuous thermodynamic profiling system to complement NOAA's forthcoming operational wind profiler.