Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Baike Xi x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Xiquan Dong, Patrick Minnis, and Baike Xi

Abstract

A record of single-layer and overcast low cloud (stratus) properties has been generated using approximately 4000 h of data collected from January 1997 to December 2002 at the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid-phase and liquid-dominant mixed-phase low cloud macrophysical, microphysical, and radiative properties including cloud-base and -top heights and temperatures, and cloud physical thickness derived from a ground-based radar and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) and content (LWC), and cloud-droplet effective radius (re) and number concentration (N) derived from the macrophysical properties and radiometer data; and cloud optical depth (τ), effective solar transmission (γ), and cloud/top-of-atmosphere albedos (R cldy/R TOA) derived from Eppley precision spectral pyranometer measurements. The cloud properties were analyzed in terms of their seasonal, monthly, and hourly variations. In general, more stratus clouds occur during winter and spring than in summer. Cloud-layer altitudes and physical thicknesses were higher and greater in summer than in winter with averaged physical thicknesses of 0.85 and 0.73 km for day and night, respectively. The seasonal variations of LWP, LWC, N, τ, R cldy, and R TOA basically follow the same pattern with maxima and minima during winter and summer, respectively. There is no significant variation in mean re, however, despite a summertime peak in aerosol loading. Although a considerable degree of variability exists, the 6-yr average values of LWP, LWC, re, N, τ, γ, R cldy, and R TOA are 151 gm−2 (138), 0.245 gm−3 (0.268), 8.7 μm (8.5), 213 cm−3 (238), 26.8 (24.8), 0.331, 0.672, and 0.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has been developed from this study. The low stratus cloud amount monotonically increases from midnight to early morning (0930 LT), and remains large until around local noon, then declines until 1930 LT when it levels off for the remainder of the night. In the morning, the stratus cloud layer is low, warm, and thick with less LWC, while in the afternoon it is high, cold, and thin with more LWC. Future parts of this series will consider other cloud types and cloud radiative forcing at the ARM SCF.

Full access
Peng Wu, Xiquan Dong, and Baike Xi

Abstract

In this study, more than 4 years of ground-based observations and retrievals were collected and analyzed to investigate the seasonal and diurnal variations of single-layered MBL (with three subsets: nondrizzling, virga, and rain) cloud and drizzle properties, as well as their vertical and horizontal variations. The annual mean drizzle frequency was ~55%, with ~70% in winter and ~45% in summer. The cloud-top (cloud-base) height for rain clouds was the highest (lowest), resulting in the deepest cloud layer, i.e., 0.8 km, which is 4 (2) times that of nondrizzling (virga) clouds. The retrieved cloud-droplet effective radii rc were the largest (smallest) for rain (nondrizzling) clouds, and the nighttime values were greater than the daytime values. Drizzle number concentration Nd and liquid water content LWCd were three orders and one order lower, respectively, than their cloud counterparts. The rc and LWCc increased from the cloud base to zi ≈ 0.75 by condensational growth, while drizzle median radii rd increased from the cloud top downward the cloud base by collision–coalescence. The adiabaticity values monotonically increased from the cloud top to the cloud base with maxima of ~0.7 (0.3) for nondrizzling (rain) clouds. The drizzling process decreases the adiabaticity by 0.25 to 0.4, and the cloud-top entrainment mixing impacts as deep as upper 40% of the cloud layers. Cloud and drizzle homogeneities decreased with increased horizontal sampling lengths. Cloud homogeneity increases with increasing cloud fraction. These results can serve as baselines for studying MBL cloud-to-rain conversion and growth processes over the Azores.

Free access
Xiquan Dong, Baike Xi, and Peng Wu

Abstract

A new method has been developed to retrieve the nighttime marine boundary layer (MBL) cloud microphysical properties, which provides a complete 19-month dataset to investigate the diurnal variation of MBL cloud microphysical properties at the Azores. Compared to the corresponding daytime results presented in the authors' previous study over the Azores region, all nighttime monthly means of cloud liquid water path (LWP) exceed their daytime counterparts with an annual-mean LWP of 140 g m−2, which is ~30.9 g m−2 larger than daytime. Because the MBL clouds are primarily driven by convective instabilities caused by cloud-top longwave (LW) radiative cooling, more MBL clouds are well mixed and coupled with the surface during the night; thus, its cloud layer is deeper and its LWP is higher. During the day, the cloud layer is warmed by the absorption of solar radiation and partially offsets the cloud-top LW cooling, which makes the cloud layer thinner with less LWP. The seasonal and diurnal variations of cloud LWC and optical depth basically follow the variation of LWP. There are, however, no significant day–night differences and diurnal variations in cloud-droplet effective radius (r e), number concentration (N d), and corresponding surface measured cloud condensation nuclei (CCN) number concentration (N CCN) (at supersaturation S = 0.2%). Surface N CCN increases from around sunrise (0300–0600 LT) to late afternoon, which strongly correlates with surface wind speed (r = 0.76) from 0300 to 1900 LT. The trend in hourly-mean N d is consistent with N CCN variation from 0000 to 0900 LT but not for afternoon and evening with an averaged ratio (N d/N CCN) of 0.35 during the entire study period.

Full access
Xiquan Dong, Baike Xi, and Patrick Minnis

Abstract

Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0–3 km), middle (3–6 km), and high clouds (>6 km) using ARM SCF ground-based paired lidar–radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of ∼10 W m−2. The annual averages of total and single-layered low-, middle-, and high-cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total- and low-cloud amounts peak during January and February and reach a minimum during July and August; high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 W m−2, respectively) are less than those under middle and high clouds (188 and 201 W m−2, respectively), but the downwelling LW fluxes (349 and 356 W m−2) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 W m−2). Low clouds produce the largest LW warming (55 W m−2) and SW cooling (−91 W m−2) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 W m−2) and SW cooling (−37 W m−2) effects at the surface. All-sky SW cloud radiative forcing (CRF) decreases and LW CRF increases with increasing cloud fraction with mean slopes of −0.984 and 0.616 W m−2 %−1, respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset ∼20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.

Full access
Wenjun Cui, Xiquan Dong, Baike Xi, and Zhe Feng

Abstract

This study uses machine-learning methods, specifically the random-forests (RF) method, on a radar-based mesoscale convective system (MCS) tracking dataset to classify the five types of linear MCS morphology in the contiguous United States during the period 2004–16. The algorithm is trained using radar- and satellite-derived spatial and morphological parameters, along with reanalysis environmental information from a 5-yr manually identified nonlinear mode and five linear MCS modes. The algorithm is then used to automate the classification of linear MCSs over 8 years with high accuracy, providing a systematic, long-term climatology of linear MCSs. Results reveal that nearly 40% of MCSs are classified as linear MCSs, of which one-half of the linear events belong to the type of system having a leading convective line. The occurrence of linear MCSs shows large annual and seasonal variations. On average, 113 linear MCSs occur annually during the warm season (March–October), with most of these events clustered from May through August in the central eastern Great Plains. MCS characteristics, including duration, propagation speed, orientation, and system cloud size, have large variability among the different linear modes. The systems having a trailing convective line and the systems having a back-building area of convection typically move more slowly and have higher precipitation rate, and thus they have higher potential for producing extreme rainfall and flash flooding. Analysis of the environmental conditions associated with linear MCSs show that the storm-relative flow is of most importance in determining the organization mode of linear MCSs.

Restricted access
Xiquan Dong, Baike Xi, Aaron Kennedy, Patrick Minnis, and Robert Wood

Abstract

A 19-month record of total and single-layered low (<3 km), middle (3–6 km), and high (>6 km) cloud fractions (CFs) and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties was generated from ground-based measurements at the Atmospheric Radiation Measurement Program (ARM) Azores site between June 2009 and December 2010. This is the most comprehensive dataset of marine cloud fraction and MBL cloud properties. The annual means of total CF and single-layered low, middle, and high CFs derived from ARM radar and lidar observations are 0.702, 0.271, 0.01, and 0.106, respectively. Greater total and single-layered high (>6 km) CFs occurred during the winter, whereas single-layered low (<3 km) CFs were more prominent during summer. Diurnal cycles for both total and low CFs were stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at ~1 km and a higher peak between 8 and 11 km during all seasons, except summer when only the low peak occurs. Persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, whereas the low pressure and moist air masses during winter generate more total and multilayered clouds, and deep frontal clouds associated with midlatitude cyclones.

The seasonal variations of cloud heights and thickness are also associated with the seasonal synoptic patterns. The MBL cloud layer is low, warm, and thin with large liquid water path (LWP) and liquid water content (LWC) during summer, whereas during winter it is higher, colder, and thicker with reduced LWP and LWC. The cloud LWP and LWC values are greater at night than during daytime. The monthly mean daytime cloud droplet effective radius r e values are nearly constant, while the daytime droplet number concentration N d basically follows the LWC variation. There is a strong correlation between cloud condensation nuclei (CCN) concentration N CCN and N d during January–May, probably due to the frequent low pressure systems because upward motion brings more surface CCN to cloud base (well-mixed boundary layer). During summer and autumn, the correlation between N d and N CCN is not as strong as that during January–May because downward motion from high pressure systems is predominant. Compared to the compiled aircraft in situ measurements during the Atlantic Stratocumulus Transition Experiment (ASTEX), the cloud microphysical retrievals in this study agree well with historical aircraft data. Different air mass sources over the ARM Azores site have significant impacts on the cloud microphysical properties and surface CCN as demonstrated by great variability in N CCN and cloud microphysical properties during some months.

Full access
Behnjamin J. Zib, Xiquan Dong, Baike Xi, and Aaron Kennedy

Abstract

With continual advancements in data assimilation systems, new observing systems, and improvements in model parameterizations, several new atmospheric reanalysis datasets have recently become available. Before using these new reanalyses it is important to assess the strengths and underlying biases contained in each dataset. A study has been performed to evaluate and compare cloud fractions (CFs) and surface radiative fluxes in several of these latest reanalyses over the Arctic using 15 years (1994–2008) of high-quality Baseline Surface Radiation Network (BSRN) observations from Barrow (BAR) and Ny-Alesund (NYA) surface stations. The five reanalyses being evaluated in this study are (i) NASA's Modern-Era Retrospective analysis for Research and Applications (MERRA), (ii) NCEP's Climate Forecast System Reanalysis (CFSR), (iii) NOAA's Twentieth Century Reanalysis Project (20CR), (iv) ECMWF's Interim Reanalysis (ERA-I), and (v) NCEP–Department of Energy (DOE)'s Reanalysis II (R2). All of the reanalyses show considerable bias in reanalyzed CF during the year, especially in winter. The large CF biases have been reflected in the surface radiation fields, as monthly biases in shortwave (SW) and longwave (LW) fluxes are more than 90 (June) and 60 W m−2 (March), respectively, in some reanalyses. ERA-I and CFSR performed the best in reanalyzing surface downwelling fluxes with annual mean biases less than 4.7 (SW) and 3.4 W m−2 (LW) over both Arctic sites. Even when producing the observed CF, radiation flux errors were found to exist in the reanalyses suggesting that they may not always be dependent on CF errors but rather on variations of more complex cloud properties, water vapor content, or aerosol loading within the reanalyses.

Full access
Yiyi Huang, Xiquan Dong, Baike Xi, Erica K. Dolinar, Ryan E. Stanfield, and Shaoyue Qiu

Abstract

Reanalyses have proven to be convenient tools for studying the Arctic climate system, but their uncertainties should first be identified. In this study, five reanalyses (JRA-55, 20CRv2c, CFSR, ERA-Interim, and MERRA-2) are compared with NASA CERES–MODIS (CM)-derived cloud fractions (CFs), cloud water paths (CWPs), top-of-atmosphere (TOA) and surface longwave (LW) and shortwave (SW) radiative fluxes over the Arctic (70°–90°N) over the period of 2000–12, and CloudSatCALIPSO (CC)-derived CFs from 2006 to 2010. The monthly mean CFs in all reanalyses except JRA-55 are close to or slightly higher than the CC-derived CFs from May to September. However, wintertime CF cannot be confidently evaluated until instrument simulators are implemented in reanalysis products. The comparison between CM and CC CFs indicates that CM-derived CFs are reliable in summer but not in winter. Although the reanalysis CWPs follow the general seasonal variations of CM CWPs, their annual means are only half or even less than the CM-retrieved CWPs (126 g m−2). The annual mean differences in TOA and surface SW and LW fluxes between CERES EBAF and reanalyses are less than 6 W m−2 for TOA radiative fluxes and 16 W m−2 for surface radiative fluxes. All reanalyses show positive biases along the northern and eastern coasts of Greenland as a result of model elevation biases or possible CM clear-sky retrieval issues. The correlations between the reanalyses and CERES satellite retrievals indicate that all five reanalyses estimate radiative fluxes better than cloud properties, and MERRA-2 and JRA-55 exhibit comparatively higher correlations for Arctic cloud and radiation properties.

Full access
Aaron D. Kennedy, Xiquan Dong, Baike Xi, Shaocheng Xie, Yunyan Zhang, and Junye Chen

Abstract

Atmospheric states from the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North American Regional Reanalysis (NARR) are compared with data from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site, including the ARM continuous forcing product and Cloud Modeling Best Estimate (CMBE) soundings, during the period 1999–2001 to understand their validity for single-column model (SCM) and cloud-resolving model (CRM) forcing datasets. Cloud fraction, precipitation, and radiation information are also compared to determine what errors exist within these reanalyses. For the atmospheric state, ARM continuous forcing and the reanalyses have good agreement with the CMBE sounding information, with biases generally within 0.5 K for temperature, 0.5 m s−1 for wind, and 5% for relative humidity. Larger disagreements occur in the upper troposphere (p < 300 hPa) for temperature, humidity, and zonal wind, and in the boundary layer (p > 800 hPa) for meridional wind and humidity. In these regions, larger errors may exist in derived forcing products. Significant differences exist for vertical pressure velocity, with the largest biases occurring during the spring upwelling and summer downwelling periods. Although NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses in terms of correlation with cloud fraction. Because the ARM forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture budgets, much of the precipitation (specifically during the late spring/early summer) is caused by smaller-scale forcing that is not captured by the reanalyses. While reanalysis-based forcing appears to be feasible for the majority of the year at this location, it may have limited usage during the late spring and early summer, when convection is common at the ARM SGP site. Both NARR and MERRA capture the seasonal variation of cloud fractions (CFs) observed by ARM radar–lidar and Geostationary Operational Environmental Satellite (GOES) with high correlations (0.92–0.78) but with negative biases of 14% and 3%, respectively. Compared to the ARM observations, MERRA shows better agreement for both shortwave (SW) and longwave (LW) fluxes except for LW-down (due to a negative bias in water vapor): NARR has significant positive bias for SW-down and negative bias for LW-down under clear-sky and all-sky conditions. The NARR biases result from a combination of too few clouds and a lack of sufficient extinction by aerosols and water vapor in the atmospheric column. The results presented here represent only one location for a limited period, and more comparisons at different locations and longer periods are needed.

Full access
Ryan E. Stanfield, Xiquan Dong, Baike Xi, Aaron Kennedy, Anthony D. Del Genio, Patrick Minnis, and Jonathan H. Jiang

Abstract

Although many improvements have been made in phase 5 of the Coupled Model Intercomparison Project (CMIP5), clouds remain a significant source of uncertainty in general circulation models (GCMs) because their structural and optical properties are strongly dependent upon interactions between aerosol/cloud microphysics and dynamics that are unresolved in such models. Recent changes to the planetary boundary layer (PBL) turbulence and moist convection parameterizations in the NASA GISS Model E2 atmospheric GCM (post-CMIP5, hereafter P5) have improved cloud simulations significantly compared to its CMIP5 (hereafter C5) predecessor. A study has been performed to evaluate these changes between the P5 and C5 versions of the GCM, both of which used prescribed sea surface temperatures. P5 and C5 simulated cloud fraction (CF), liquid water path (LWP), ice water path (IWP), cloud water path (CWP), precipitable water vapor (PWV), and relative humidity (RH) have been compared to multiple satellite observations including the Clouds and the Earth’s Radiant Energy System–Moderate Resolution Imaging Spectroradiometer (CERES-MODIS, hereafter CM), CloudSatCloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; hereafter CC), Atmospheric Infrared Sounder (AIRS), and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Although some improvements are observed in the P5 simulation on a global scale, large improvements have been found over the southern midlatitudes (SMLs), where correlations increased and both bias and root-mean-square error (RMSE) significantly decreased, in relation to the previous C5 simulation, when compared to observations. Changes to the PBL scheme have resulted in improved total column CFs, particularly over the SMLs where marine boundary layer (MBL) CFs have increased by nearly 20% relative to the previous C5 simulation. Globally, the P5 simulated CWPs are 25 g m−2 lower than the previous C5 results. The P5 version of the GCM simulates PWV and RH higher than its C5 counterpart and agrees well with the AMSR-E and AIRS observations. The moister atmospheric conditions simulated by P5 are consistent with the CF comparison and provide a strong support for the increase in MBL clouds over the SMLs. Over the tropics, the P5 version of the GCM simulated total column CFs and CWPs are slightly lower than the previous C5 results, primarily as a result of the shallower tropical boundary layer in P5 relative to C5 in regions outside the marine stratocumulus decks.

Full access