Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Banghua Yan x
  • Assimilation of Satellite Cloud and Precipitation Observations x
  • Refine by Access: All Content x
Clear All Modify Search
Fuzhong Weng
,
Tong Zhu
, and
Banghua Yan

Abstract

A hybrid variational scheme (HVAR) is developed to produce the vortex analysis associated with tropical storms. This scheme allows for direct assimilation of rain-affected radiances from satellite microwave instruments. In the HVAR, the atmospheric temperature and surface parameters in the storms are derived from a one-dimension variational data assimilation (1DVAR) scheme, which minimizes the cost function of both background information and satellite measurements. In the minimization process, a radiative transfer model including scattering and emission is used for radiance simulation (see Part I of this study). Through the use of 4DVAR, atmospheric temperatures from the Advanced Microwave Sounding Unit (AMSU) and surface parameters from the Advanced Microwave Scanning Radiometer (AMSR-E) are assimilated into global forecast model outputs to produce an improved analysis. This new scheme is generally applicable for variable stages of storms. In the 2005 hurricane season, the HVAR was applied for two hurricane cases, resulting in improved analyses of three-dimensional structures of temperature and wind fields as compared with operational model analysis fields. It is found that HVAR reproduces detailed structures for the hurricane warm core at the upper troposphere. Both lower-level wind speed and upper-level divergence are enhanced with reasonable asymmetric structure.

Full access