Search Results
You are looking at 1 - 10 of 11 items for :
- Author or Editor: Barbara Casati x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Abstract
Recent advancements in numerical weather prediction (NWP) and the enhancement of model resolution have created the need for more robust and informative verification methods. In response to these needs, a plethora of spatial verification approaches have been developed in the past two decades. A spatial verification method intercomparison was established in 2007 with the aim of gaining a better understanding of the abilities of the new spatial verification methods to diagnose different types of forecast errors. The project focused on prescribed errors for quantitative precipitation forecasts over the central United States. The intercomparison led to a classification of spatial verification methods and a cataloging of their diagnostic capabilities, providing useful guidance to end users, model developers, and verification scientists. A decade later, NWP systems have continued to increase in resolution, including advances in high-resolution ensembles. This article describes the setup of a second phase of the verification intercomparison, called the Mesoscale Verification Intercomparison over Complex Terrain (MesoVICT). MesoVICT focuses on the application, capability, and enhancement of spatial verification methods to deterministic and ensemble forecasts of precipitation, wind, and temperature over complex terrain. Importantly, this phase also explores the issue of analysis uncertainty through the use of an ensemble of meteorological analyses.
Abstract
Recent advancements in numerical weather prediction (NWP) and the enhancement of model resolution have created the need for more robust and informative verification methods. In response to these needs, a plethora of spatial verification approaches have been developed in the past two decades. A spatial verification method intercomparison was established in 2007 with the aim of gaining a better understanding of the abilities of the new spatial verification methods to diagnose different types of forecast errors. The project focused on prescribed errors for quantitative precipitation forecasts over the central United States. The intercomparison led to a classification of spatial verification methods and a cataloging of their diagnostic capabilities, providing useful guidance to end users, model developers, and verification scientists. A decade later, NWP systems have continued to increase in resolution, including advances in high-resolution ensembles. This article describes the setup of a second phase of the verification intercomparison, called the Mesoscale Verification Intercomparison over Complex Terrain (MesoVICT). MesoVICT focuses on the application, capability, and enhancement of spatial verification methods to deterministic and ensemble forecasts of precipitation, wind, and temperature over complex terrain. Importantly, this phase also explores the issue of analysis uncertainty through the use of an ensemble of meteorological analyses.
Abstract
The goal of the Canadian Arctic Weather Science (CAWS) project is to conduct research into the future operational monitoring and forecasting programs of Environment and Climate Change Canada in the Arctic where increased economic and recreational activities are expected with enhanced transportation and search and rescue requirements. Due to cost, remoteness and vast geographical coverage, the future monitoring concept includes a combination of space-based observations, sparse in situ surface measurements, and advanced reference sites. A prototype reference site has been established at Iqaluit, Nunavut (63°45'N, 68°33'W), that includes a Ka-band radar, water vapor lidars (both in-house and commercial versions), multiple Doppler lidars, ceilometers, radiation flux, and precipitation sensors. The scope of the project includes understanding of the polar processes, evaluating new technologies, validation of satellite products, validation of numerical weather prediction systems, development of warning products, and communication of their risk to a variety of users. This contribution will provide an overview of the CAWS project to show some preliminary results and to encourage collaborations.
Abstract
The goal of the Canadian Arctic Weather Science (CAWS) project is to conduct research into the future operational monitoring and forecasting programs of Environment and Climate Change Canada in the Arctic where increased economic and recreational activities are expected with enhanced transportation and search and rescue requirements. Due to cost, remoteness and vast geographical coverage, the future monitoring concept includes a combination of space-based observations, sparse in situ surface measurements, and advanced reference sites. A prototype reference site has been established at Iqaluit, Nunavut (63°45'N, 68°33'W), that includes a Ka-band radar, water vapor lidars (both in-house and commercial versions), multiple Doppler lidars, ceilometers, radiation flux, and precipitation sensors. The scope of the project includes understanding of the polar processes, evaluating new technologies, validation of satellite products, validation of numerical weather prediction systems, development of warning products, and communication of their risk to a variety of users. This contribution will provide an overview of the CAWS project to show some preliminary results and to encourage collaborations.
Abstract
The International Verification Methods Workshop was held online in November 2020 and included sessions on physical error characterization using process diagnostics and error tracking techniques; exploitation of data assimilation techniques in verification practices, e.g., to address representativeness issues and observation uncertainty; spatial verification methods and the Model Evaluation Tools, as unified reference verification software; and meta-verification and best practices for scores computation. The workshop reached out to diverse research communities working in the areas of high-impact weather, subseasonal to seasonal prediction, polar prediction, and sea ice and ocean prediction. This article summarizes the major outcomes of the workshop and outlines future strategic directions for verification research.
Abstract
The International Verification Methods Workshop was held online in November 2020 and included sessions on physical error characterization using process diagnostics and error tracking techniques; exploitation of data assimilation techniques in verification practices, e.g., to address representativeness issues and observation uncertainty; spatial verification methods and the Model Evaluation Tools, as unified reference verification software; and meta-verification and best practices for scores computation. The workshop reached out to diverse research communities working in the areas of high-impact weather, subseasonal to seasonal prediction, polar prediction, and sea ice and ocean prediction. This article summarizes the major outcomes of the workshop and outlines future strategic directions for verification research.
Abstract
Operational agencies face significant challenges related to the verification and evaluation of weather forecasts. These challenges were investigated in a series of online workshops and polls engaging operational personnel from six countries. Five key themes emerged: inadequate verification approaches for both existing and emerging products; incomplete and uncertain observations; difficulties in accurately capturing users’ real-world experiences using simplified metrics; poor communication and understanding of forecasts and complex verification information; and institutional factors such as limited resources, evolving meteorologist roles, and concerns over reputational damage. We identify nearly 50 operationally relevant scientific questions and suggest calls to action. Addressing these needs includes designing forecast systems with verification as a central consideration, enhancing the availability of observations, and developing and adopting community software systems. Additionally, we propose the establishment of an international community comprising environmental and social science researchers, statisticians, verification practitioners, and users to provide sustained support for this collective endeavor.
Abstract
Operational agencies face significant challenges related to the verification and evaluation of weather forecasts. These challenges were investigated in a series of online workshops and polls engaging operational personnel from six countries. Five key themes emerged: inadequate verification approaches for both existing and emerging products; incomplete and uncertain observations; difficulties in accurately capturing users’ real-world experiences using simplified metrics; poor communication and understanding of forecasts and complex verification information; and institutional factors such as limited resources, evolving meteorologist roles, and concerns over reputational damage. We identify nearly 50 operationally relevant scientific questions and suggest calls to action. Addressing these needs includes designing forecast systems with verification as a central consideration, enhancing the availability of observations, and developing and adopting community software systems. Additionally, we propose the establishment of an international community comprising environmental and social science researchers, statisticians, verification practitioners, and users to provide sustained support for this collective endeavor.