Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Barbara J. Brooks x
- Weather and Forecasting x
- Refine by Access: All Content x
Abstract
The verification phase of the World Weather Research Programme (WWRP) Sydney 2000 Forecast Demonstration Project (FDP) was intended to measure the skill of the participating nowcast algorithms in predicting the location of convection, rainfall rate and occurrence, wind speed and direction, severe thunderstorm wind gusts, and hail location and size. An additional question of interest was whether forecasters could improve the quality of the nowcasts compared to the FDP products alone.
The nowcasts were verified using a variety of statistical techniques. Observational data came from radar reflectivity and rainfall analyses, a network of rain gauges, and human (spotter) observations. The verification results showed that the cell tracking algorithms predicted the location of the strongest cells with a mean error of about 15–30 km for a 1-h forecast, and were usually more accurate than an extrapolation (Lagrangian persistence) forecast. Mean location errors for the area tracking schemes were on the order of 20 km.
Almost all of the algorithms successfully predicted the frequency of rain throughout the forecast period, although most underestimated the frequency of high rain rates. The skill in predicting rain occurrence decreased very quickly into the forecast period. In particular, the algorithms could not predict the precise location of heavy rain beyond the first 10–20 min. Using radar analyses as verification, the algorithms' spatial forecasts were consistently more skillful than simple persistence. However, when verified against rain gauge observations at point locations, the algorithms had difficulty beating persistence, mainly due to differences in spatial and temporal resolution.
Only one algorithm attempted to forecast gust fronts. The results for a limited sample showed a mean absolute error of 7 km h−1 and mean bias of 3 km h−1 in the speed of the gust fronts during the FDP. The errors in sea-breeze front forecasts were half as large, with essentially no bias. Verification of the hail associated with the 3 November tornadic storm showed that the two algorithms that estimated hail size and occurrence successfully diagnosed the onset and cessation of the hail to within 30 min of the reported sightings. The time evolution of hail size was reasonably well captured by the algorithms, and the predicted mean and maximum hail diameters were consistent with the observations.
The Thunderstorm Interactive Forecast System (TIFS) allowed forecasters to modify the output of the cell tracking nowcasts, primarily using it to remove cells that were insignificant or diagnosed with incorrect motion. This manual filtering resulted in markedly reduced mean cell position errors when compared to the unfiltered forecasts. However, when forecasters attempted to adjust the storm tracks for a small number of well-defined intense cells, the position errors increased slightly, suggesting that in such cases the objective guidance is probably the best estimate of storm motion.
Abstract
The verification phase of the World Weather Research Programme (WWRP) Sydney 2000 Forecast Demonstration Project (FDP) was intended to measure the skill of the participating nowcast algorithms in predicting the location of convection, rainfall rate and occurrence, wind speed and direction, severe thunderstorm wind gusts, and hail location and size. An additional question of interest was whether forecasters could improve the quality of the nowcasts compared to the FDP products alone.
The nowcasts were verified using a variety of statistical techniques. Observational data came from radar reflectivity and rainfall analyses, a network of rain gauges, and human (spotter) observations. The verification results showed that the cell tracking algorithms predicted the location of the strongest cells with a mean error of about 15–30 km for a 1-h forecast, and were usually more accurate than an extrapolation (Lagrangian persistence) forecast. Mean location errors for the area tracking schemes were on the order of 20 km.
Almost all of the algorithms successfully predicted the frequency of rain throughout the forecast period, although most underestimated the frequency of high rain rates. The skill in predicting rain occurrence decreased very quickly into the forecast period. In particular, the algorithms could not predict the precise location of heavy rain beyond the first 10–20 min. Using radar analyses as verification, the algorithms' spatial forecasts were consistently more skillful than simple persistence. However, when verified against rain gauge observations at point locations, the algorithms had difficulty beating persistence, mainly due to differences in spatial and temporal resolution.
Only one algorithm attempted to forecast gust fronts. The results for a limited sample showed a mean absolute error of 7 km h−1 and mean bias of 3 km h−1 in the speed of the gust fronts during the FDP. The errors in sea-breeze front forecasts were half as large, with essentially no bias. Verification of the hail associated with the 3 November tornadic storm showed that the two algorithms that estimated hail size and occurrence successfully diagnosed the onset and cessation of the hail to within 30 min of the reported sightings. The time evolution of hail size was reasonably well captured by the algorithms, and the predicted mean and maximum hail diameters were consistent with the observations.
The Thunderstorm Interactive Forecast System (TIFS) allowed forecasters to modify the output of the cell tracking nowcasts, primarily using it to remove cells that were insignificant or diagnosed with incorrect motion. This manual filtering resulted in markedly reduced mean cell position errors when compared to the unfiltered forecasts. However, when forecasters attempted to adjust the storm tracks for a small number of well-defined intense cells, the position errors increased slightly, suggesting that in such cases the objective guidance is probably the best estimate of storm motion.