Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Barry Lefer x
  • Refine by Access: All Content x
Clear All Modify Search
Christine L. Haman
,
Barry Lefer
, and
Gary A. Morris

Abstract

Boundary layer height is estimated during a 21-month period in Houston, Texas, using continuous ceilometer observations and the minimum-gradient method. A comparison with over 60 radiosondes indicates overall agreement between ceilometer- and radiosonde-estimated PBL and residual layer heights. Additionally, the ceilometer-estimated PBL heights agree well with 31 vertical profiles of ozone. Difficulty detecting the PBL height occurs immediately following a frontal system with precipitation, during periods with high wind speeds, and in the early evening when convection is weakening, a new stable surface layer is forming, and the lofted aerosols detected by the lidar do not represent the PBL. Long-term diurnal observations of the PBL height indicate nocturnal PBL heights range from approximately 100 to 300 m throughout the year, while the convective PBL displays more seasonal and daily variability typically ranging from 1100 m in the winter to 2000 m in the summer.

Full access
Jhoon Kim
,
Ukkyo Jeong
,
Myoung-Hwan Ahn
,
Jae H. Kim
,
Rokjin J. Park
,
Hanlim Lee
,
Chul Han Song
,
Yong-Sang Choi
,
Kwon-Ho Lee
,
Jung-Moon Yoo
,
Myeong-Jae Jeong
,
Seon Ki Park
,
Kwang-Mog Lee
,
Chang-Keun Song
,
Sang-Woo Kim
,
Young Joon Kim
,
Si-Wan Kim
,
Mijin Kim
,
Sujung Go
,
Xiong Liu
,
Kelly Chance
,
Christopher Chan Miller
,
Jay Al-Saadi
,
Ben Veihelmann
,
Pawan K. Bhartia
,
Omar Torres
,
Gonzalo González Abad
,
David P. Haffner
,
Dai Ho Ko
,
Seung Hoon Lee
,
Jung-Hun Woo
,
Heesung Chong
,
Sang Seo Park
,
Dennis Nicks
,
Won Jun Choi
,
Kyung-Jung Moon
,
Ara Cho
,
Jongmin Yoon
,
Sang-kyun Kim
,
Hyunkee Hong
,
Kyunghwa Lee
,
Hana Lee
,
Seoyoung Lee
,
Myungje Choi
,
Pepijn Veefkind
,
Pieternel F. Levelt
,
David P. Edwards
,
Mina Kang
,
Mijin Eo
,
Juseon Bak
,
Kanghyun Baek
,
Hyeong-Ahn Kwon
,
Jiwon Yang
,
Junsung Park
,
Kyung Man Han
,
Bo-Ram Kim
,
Hee-Woo Shin
,
Haklim Choi
,
Ebony Lee
,
Jihyo Chong
,
Yesol Cha
,
Ja-Ho Koo
,
Hitoshi Irie
,
Sachiko Hayashida
,
Yasko Kasai
,
Yugo Kanaya
,
Cheng Liu
,
Jintai Lin
,
James H. Crawford
,
Gregory R. Carmichael
,
Michael J. Newchurch
,
Barry L. Lefer
,
Jay R. Herman
,
Robert J. Swap
,
Alexis K. H. Lau
,
Thomas P. Kurosu
,
Glen Jaross
,
Berit Ahlers
,
Marcel Dobber
,
C. Thomas McElroy
, and
Yunsoo Choi

Abstract

The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).

Free access