Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Bradfield Lyon x
  • U.S. CLIVAR Drought x
  • Refine by Access: All Content x
Clear All Modify Search
Bradfield Lyon

Abstract

Observations of daily maximum temperature (Tx) and monthly precipitation and their counterpart fields from three coupled models from the Coupled Model Intercomparison Project Phase 3 (CMIP3) archive have been used for exploratory research into the behavior of heat waves, drought, and their joint occurrence across the southern Africa subcontinent. The focus is on seasonal drought and heat waves during austral summer [December–February (DJF)] for land areas south of 15°S. Observational results (Tx available only for South Africa) are compared with those based on CMIP3 twentieth-century climate runs for a common analysis period of 1961–2000 while climate projections for the twenty-first century are also considered using the Special Report on Emissions Scenarios (SRES) A1B forcing scenario. Heat waves were defined when daily Tx values exceeded the 90th percentile for at least 3 consecutive days, while drought was identified via a standardized index of seasonal precipitation. When assessed over the entire study domain the unconditional probability of a heat wave, and its conditional probability given drought conditions, were similar in the models and (for a smaller domain) observations. The models exhibited less ability in reproducing the observed conditional probability of a heat wave given El Niño conditions. This appears to be related to a comparatively weak seasonal precipitation teleconnection pattern into southern Africa in the models during El Niño when drought conditions often develop. The heat wave–drought relationship did not substantially change in climate projections when computing anomalies from future climate means. However, relative to a 1981–2000 base period, the probability of a heat wave increases by over 3.5 times relative to the current climate. Projections across the three models suggest a future drying trend during DJF although this was found to be a model-dependent result, consistent with other studies. However, a decreasing trend in the evaporative fraction was identified across models, indicating that evaluation of future drought conditions needs to take into account both the supply (precipitation) and demand (evaporation) side of the surface water balance.

Full access
Siegfried Schubert
,
David Gutzler
,
Hailan Wang
,
Aiguo Dai
,
Tom Delworth
,
Clara Deser
,
Kirsten Findell
,
Rong Fu
,
Wayne Higgins
,
Martin Hoerling
,
Ben Kirtman
,
Randal Koster
,
Arun Kumar
,
David Legler
,
Dennis Lettenmaier
,
Bradfield Lyon
,
Victor Magana
,
Kingtse Mo
,
Sumant Nigam
,
Philip Pegion
,
Adam Phillips
,
Roger Pulwarty
,
David Rind
,
Alfredo Ruiz-Barradas
,
Jae Schemm
,
Richard Seager
,
Ronald Stewart
,
Max Suarez
,
Jozef Syktus
,
Mingfang Ting
,
Chunzai Wang
,
Scott Weaver
, and
Ning Zeng

Abstract

The U.S. Climate Variability and Predictability (CLIVAR) working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land–atmosphere feedbacks on regional drought. The runs were carried out with five different atmospheric general circulation models (AGCMs) and one coupled atmosphere–ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Niño–Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic multidecadal oscillation (AMO), and a global trend pattern.

One of the key findings is that all of the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the United States tends to occur when the two oceans have anomalies of opposite signs. Further highlights of the response over the United States to the Pacific forcing include precipitation signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. The response to the positive SST trend forcing pattern is an overall surface warming over the world’s land areas, with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all of the models.

It is hoped that these early results, as well as those reported in the other contributions to this special issue on drought, will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.

Full access