Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Bradfield Lyon x
  • Global Drought Information System - Drought Characterization, Occurrence, Driving Mechanisms, and Predictability Worldwide (GDIS Worldwide) x
  • Refine by Access: All Content x
Clear All Modify Search
Bradfield Lyon

Abstract

This paper provides a review of atmospheric circulation and sea surface temperature (SST) conditions that are associated with meteorological drought on the seasonal time scale in the Greater Horn of Africa (the region 10°S–15°N, 30°–52°E). New findings regarding a post-1998 increase in drought frequency during the March–May (MAM) “long rains” are also reported. The period 1950–2010 is emphasized, although rainfall and SST data from 1901–2010 are used to place the recent long rains decline in a multidecadal context. For the latter case, climate model simulations and isolated basin SST experiments are also utilized.

Climatologically, rainfall exhibits a unimodal June–August (JJA) maximum in west-central Ethiopia with a generally bimodal [MAM and October–December (OND) maxima] distribution in locations to the south and east. Emphasis will be on these three seasons. SST anomalies in the tropical Pacific and Indian Oceans show the strongest association with drought during OND in locations having a bimodal annual cycle, with weaker associations during MAM. The influence of the El Niño–Southern Oscillation (ENSO) phenomenon critically depends on its ability to affect SSTs outside the Pacific. Salient features of the anomalous atmospheric circulation during drought events in different locations and seasons are discussed. The post-1998 decline in the long rains is found to be driven strongly (although not necessarily exclusively) by natural multidecadal variability in the tropical Pacific rather than anthropogenic climate change. This conclusion is supported by observational analyses and climate model experiments, which are presented.

Full access
Siegfried D. Schubert
,
Ronald E. Stewart
,
Hailan Wang
,
Mathew Barlow
,
Ernesto H. Berbery
,
Wenju Cai
,
Martin P. Hoerling
,
Krishna K. Kanikicharla
,
Randal D. Koster
,
Bradfield Lyon
,
Annarita Mariotti
,
Carlos R. Mechoso
,
Omar V. Müller
,
Belen Rodriguez-Fonseca
,
Richard Seager
,
Sonia I. Seneviratne
,
Lixia Zhang
, and
Tianjun Zhou

Abstract

Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

Full access