Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Bradford W. Berger x
- Article x
- Refine by Access: All Content x
Abstract
Time series of mixed layer depth, zi, and stable boundary layer height from March through October of 1998 are derived from a 915-MHz boundary layer profiling radar and CO2 mixing ratio measured from a 447-m tower in northern Wisconsin. Mixed layer depths from the profiler are in good agreement with radiosonde measurements. Maximum zi occurs in May, coincident with the maximum daytime surface sensible heat flux. Incoming radiation is higher in June and July, but a greater proportion is converted to latent heat by photosynthesizing vegetation. An empirical relationship between zi and the square root of the cumulative surface virtual potential temperature flux is obtained (r 2 = 0.98) allowing estimates of zi from measurements of virtual potential temperature flux under certain conditions. In fair-weather conditions the residual mixed layer top was observed by the profiler on several nights each month. The synoptic mean vertical velocity (subsidence rate) is estimated from the temporal evolution of the residual mixed layer height during the night. The influence of subsidence on the evolution of the mixed, stable, and residual layers is discussed. The CO2 jump across the inversion at night is also estimated from the tower measurements.
Abstract
Time series of mixed layer depth, zi, and stable boundary layer height from March through October of 1998 are derived from a 915-MHz boundary layer profiling radar and CO2 mixing ratio measured from a 447-m tower in northern Wisconsin. Mixed layer depths from the profiler are in good agreement with radiosonde measurements. Maximum zi occurs in May, coincident with the maximum daytime surface sensible heat flux. Incoming radiation is higher in June and July, but a greater proportion is converted to latent heat by photosynthesizing vegetation. An empirical relationship between zi and the square root of the cumulative surface virtual potential temperature flux is obtained (r 2 = 0.98) allowing estimates of zi from measurements of virtual potential temperature flux under certain conditions. In fair-weather conditions the residual mixed layer top was observed by the profiler on several nights each month. The synoptic mean vertical velocity (subsidence rate) is estimated from the temporal evolution of the residual mixed layer height during the night. The influence of subsidence on the evolution of the mixed, stable, and residual layers is discussed. The CO2 jump across the inversion at night is also estimated from the tower measurements.
Abstract
Methodology for determining fluxes of CO2 and H2O vapor with the eddy-covariance method using data from instruments on a 447-m tower in the forest of northern Wisconsin is addressed. The primary goal of this study is the validation of the methods used to determine the net ecosystem exchange of CO2. Two-day least squares fits coupled with 30-day running averages limit calibration error of infrared gas analyzers for CO2 and H2O signals to ≈2%–3%. Sonic anemometers are aligned with local streamlines by fitting a sine function to tilt and wind direction averages, and fitting a third-order polynomial to the residual. Lag times are determined by selecting the peak in lagged covariance with an error of ≈1.5%–2% for CO2 and ≈1% for H2O vapor. Theory and a spectral fit method allow determination of the underestimation in CO2 flux (<5% daytime, <12% nighttime) and H2O vapor flux (<21%), which is due to spectral degradation induced by long air-sampling tubes. Scale analysis finds 0.5-h flux averaging periods are sufficient to measure all flux scales at 30-m height, but 1 h is necessary at higher levels, and random errors in the flux measurements due to limited sampling of atmospheric turbulence are fairly large (≈15%–20% for CO2 and ≈20%–40% for H2O vapor at lower levels for a 1-h period).
Abstract
Methodology for determining fluxes of CO2 and H2O vapor with the eddy-covariance method using data from instruments on a 447-m tower in the forest of northern Wisconsin is addressed. The primary goal of this study is the validation of the methods used to determine the net ecosystem exchange of CO2. Two-day least squares fits coupled with 30-day running averages limit calibration error of infrared gas analyzers for CO2 and H2O signals to ≈2%–3%. Sonic anemometers are aligned with local streamlines by fitting a sine function to tilt and wind direction averages, and fitting a third-order polynomial to the residual. Lag times are determined by selecting the peak in lagged covariance with an error of ≈1.5%–2% for CO2 and ≈1% for H2O vapor. Theory and a spectral fit method allow determination of the underestimation in CO2 flux (<5% daytime, <12% nighttime) and H2O vapor flux (<21%), which is due to spectral degradation induced by long air-sampling tubes. Scale analysis finds 0.5-h flux averaging periods are sufficient to measure all flux scales at 30-m height, but 1 h is necessary at higher levels, and random errors in the flux measurements due to limited sampling of atmospheric turbulence are fairly large (≈15%–20% for CO2 and ≈20%–40% for H2O vapor at lower levels for a 1-h period).
Abstract
The structure and evolution of the extratropical marine atmosphere boundary layer (MABL) depend largely on the variability of stratus and stratocumulus clouds. Stratus clouds are generally associated with a well-mixed MABL, whereas daytime observations of stratocumulus-topped boundary layers generally indicate that the cloud and subcloud layers are decoupled. In the Atlantic Stratocumulus Transition Experiment, aircraft measurements show a surface-based mixed layer separated from the base of the stratocumulus by a layer that is stable to dry turbulent mixing. This layer forms due to shortwave heating of the stratocumulus clouds. Cumulus clouds often develop in this transition layer and they play a fundamental role in the redistribution of heat in the decoupled stratcumulus-capped boundary layer. They are, however, very sensitive to small changes in the heat and moisture in the boundary layer and are generally transient features that depend directly on the surface sensible and latent heat fluxes. The cumulus contribute a bimodal drop-size distribution to the stratocumulus layer skewed to the smallest sizes but may contain many large drops. Clouds increase at night in response to the combined effect of convection, which can transport drops to the top of the MABL, and outgoing longwave radiation, which cools the boundary layer. The relationship between the cumulus clouds and the latent heat flux is complex. Small cumulus may enhance the flux, but as more water vapor is redistributed vertically by an increase in convective activity the latent heat flux decreases.
This study illustrates the need for boundary-layer models to properly handle the occurrence of intermittent cumulus to predict the diurnal evolution of the stratocumulus-capped MABL.
Abstract
The structure and evolution of the extratropical marine atmosphere boundary layer (MABL) depend largely on the variability of stratus and stratocumulus clouds. Stratus clouds are generally associated with a well-mixed MABL, whereas daytime observations of stratocumulus-topped boundary layers generally indicate that the cloud and subcloud layers are decoupled. In the Atlantic Stratocumulus Transition Experiment, aircraft measurements show a surface-based mixed layer separated from the base of the stratocumulus by a layer that is stable to dry turbulent mixing. This layer forms due to shortwave heating of the stratocumulus clouds. Cumulus clouds often develop in this transition layer and they play a fundamental role in the redistribution of heat in the decoupled stratcumulus-capped boundary layer. They are, however, very sensitive to small changes in the heat and moisture in the boundary layer and are generally transient features that depend directly on the surface sensible and latent heat fluxes. The cumulus contribute a bimodal drop-size distribution to the stratocumulus layer skewed to the smallest sizes but may contain many large drops. Clouds increase at night in response to the combined effect of convection, which can transport drops to the top of the MABL, and outgoing longwave radiation, which cools the boundary layer. The relationship between the cumulus clouds and the latent heat flux is complex. Small cumulus may enhance the flux, but as more water vapor is redistributed vertically by an increase in convective activity the latent heat flux decreases.
This study illustrates the need for boundary-layer models to properly handle the occurrence of intermittent cumulus to predict the diurnal evolution of the stratocumulus-capped MABL.