Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Brandon J. Vogt x
  • Pictures of the Month in Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Brandon J. Vogt and Stephen J. Hodanish

Abstract

For the state of Colorado, 10 years (2003–12) of 1 April–31 October cloud-to-ground (CG) lightning stroke data are mapped at 500-m spatial resolution over a 10-m spatial resolution U.S. Geological Survey (USGS) digital elevation model (DEM). Spatially, the 12.5 million strokes that are analyzed represent ground contacts, but translate to density values that are about twice the number of ground contacts. Visual interpretation of the mapped data reveals the general lightning climatology of the state, while geospatial analyses that quantify lightning activity by elevation identify certain topographic influences of Colorado’s physical landscape. Elevations lower than 1829 m (6000 ft) and above 3200 m (10 500 ft) show a positive relationship between lightning activity and elevation, while the variegated topography that lies between these two elevations is characterized by a fluctuating relationship. Though many topographic controls are elucidated through the mappings and analyses, the major finding of this paper is the sharp increase in stroke density observed above 3200 m (10 500 ft). Topography’s role in this rapid surge in stroke density, which peaks in the highest mountain summits, is not well known, and until now, was not well documented in the refereed literature at such high resolution from a long-duration dataset.

Full access