Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Brian J. Billings x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Brian J. Billings, Vanda Grubišić, and Randolph D. Borys


A persistent cold-air pool in the Yampa Valley of northwestern Colorado was simulated with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The observed cold-air pool, which was identified by temperature measurements along a line of surface stations ascending the eastern side of the valley, remained in place throughout the day of 10 January 2004. The baseline simulation with horizontal resolution of 1 km, which is close to the resolution of operational regional mesoscale model forecasts, neither matched the strength of the observed cold-air pool nor retained the cold pool throughout the day. Varying the PBL parameterization, increasing the vertical resolution, and increasing the model spinup time did not significantly improve the results. However, the inclusion of snow cover, increased horizontal resolution, and an improved treatment of horizontal diffusion did have a sizable effect on the forecast quality. The snow cover in the baseline simulation was essential for preventing the diurnal heating from eroding the cold pool, but was only sufficient to produce a nearly isothermal temperature structure within the valley, largely because of an increased reflection of solar radiation. The increase of horizontal resolution to 333 and 111 m resulted in a stronger cold-air pool and its retention throughout the day. In addition to improving the resolution of flow features in steep terrain, resulting in, for example, less drainage out of the valley, the increase in horizontal resolution led to a better forecast because of a reduced magnitude of horizontal diffusion calculated along the terrain-following model surfaces. Calculating horizontal diffusion along the constant height levels had a beneficial impact on the quality of the simulations, producing effects similar to those achieved by increasing the horizontal resolution, but at a fraction of the computational cost.

Full access
Juerg Schmidli, Brian Billings, Fotini K. Chow, Stephan F. J. de Wekker, James Doyle, Vanda Grubišić, Teddy Holt, Qiangfang Jiang, Katherine A. Lundquist, Peter Sheridan, Simon Vosper, C. David Whiteman, Andrzej A. Wyszogrodzki, and Günther Zängl


Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valley–plain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-valley wind. The models use the same initial and lateral boundary conditions, and standard parameterizations for turbulence, radiation, and land surface processes. The evolution of the mean along-valley wind (averaged over the valley cross section) is similar for all models, except for a time shift between individual models of up to 2 h and slight differences in the speed of the evolution. The analysis suggests that these differences are primarily due to differences in the simulated surface energy balance such as the dependence of the sensible heat flux on surface wind speed. Additional sensitivity experiments indicate that the evolution of the mean along-valley flow is largely independent of the choice of the dynamical core and of the turbulence parameterization scheme. The latter does, however, have a significant influence on the vertical structure of the boundary layer and of the along-valley wind. Thus, this ideal case may be useful for testing and evaluation of mesoscale numerical models with respect to land surface–atmosphere interactions and turbulence parameterizations.

Full access