Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Brian J. Billings x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Vanda Grubišić and Brian J. Billings

Abstract

A large-amplitude lee-wave rotor event observationally documented during Sierra Rotors Project Intensive Observing Period (IOP) 8 on 24–26 March 2004 in the lee of the southern Sierra Nevada is examined. Mountain waves and rotors occurred over Owens Valley in a pre-cold-frontal environment. In this study, the evolution and structure of the observed and numerically simulated mountain waves and rotors during the event on 25 March, in which the horizontal circulation associated with the rotor was observed as an opposing, easterly flow by the mesonetwork of surface stations in Owens Valley, are analyzed.

The high-resolution numerical simulations of this case, performed with the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) run with multiple nested-grid domains, the finest grid having 333-m horizontal spacing, reproduced many of the observed features of this event. These include small-amplitude waves above the Sierra ridge decoupled from thermally forced flow within the valley, and a large-amplitude mountain wave, turbulent rotor, and strong westerlies on the Sierra Nevada lee slopes during the period of the observed surface easterly flow. The sequence of the observed and simulated events shows a pronounced diurnal variation with the maximum wave and rotor activity occurring in the early evening hours during both days of IOP 8.

The lee-wave response, and thus indirectly the appearance of lee-wave rotor during the core IOP 8 period, is found to be strongly controlled by temporal changes in the upstream ambient wind and stability profiles. The downstream mountain range exerts strong control over the lee-wave horizontal wavelength during the strongest part of this event, thus exhibiting the control over the cross-valley position of the rotor and the degree of strong downslope wind penetration into the valley.

Full access
Myung-Sook Park, Andrew B. Penny, Russell L. Elsberry, Brian J. Billings, and James D. Doyle

Abstract

Latent heating and cooling rates have a critical role in predicting tropical cyclone formation and intensification. In a prior study, Park and Elsberry estimated the latent heating and cooling rates from aircraft Doppler radar [Electra Doppler Radar (ELDORA)] observations for two developing and two nondeveloping tropical disturbances during the Tropical Cyclone Structure 2008 (TCS-08) field experiment. In this study, equivalent retrievals of heating rates from two mesoscale models with 1-km resolution are calculated with the same radar thermodynamic retrieval. Contoured frequency altitude diagrams and vertical profiles of the net latent heating rates from the model are compared with the ELDORA-retrieved rates in similar cloud-cluster regions relative to the center of circulation.

In both the developing and nondeveloping cases, the radar-equivalent retrievals from the two models tend to overestimate heating for less frequently occurring, intense convective cells that contribute to positive vorticity generation and spinup in the lower troposphere. The model maximum cooling rates are consistently smaller in magnitude than the heating maxima for the nondeveloping cases as well as the developing cases. Whereas in the model the cooling rates are predominantly associated with melting processes, the effects of evaporative cooling are underestimated in convective downdraft regions and at upper levels. Because of the net warming of the columns, the models tend to overintensify the lower-tropospheric circulations if these intense convective cells are close to the circulation center. Improvements in the model physical process representations are required to realistically represent the evaporative cooling effects.

Full access