Search Results
You are looking at 1 - 10 of 11 items for
- Author or Editor: Bruce P. Briegleb x
- Refine by Access: All Content x
Abstract
Present-day Arctic and Antarctic climate of the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3) is presented. The CCM3 simulation is from a prescribed and interannually varying sea surface temperature integration from January 1979 through August 1993. Observations from a variety of sources, including the European Centre for Medium-Range Weather Forecasts analyses, rawinsonde, and surface station data, are used for validation of CCM3’s polar climate during this period. Overall, CCM3 can simulate many important polar climatic features and in general is an incremental improvement over CCM2.
The 500-hPa polar vortex minima are too deep by 50–100 m and too zonally symmetric. The Arctic sea level pressure maximum is displaced poleward, while the Icelandic region minimum is extended toward Europe, and the Aleutian region minimum is extended toward Asia. The Antarctic circumpolar trough of low sea level pressure is slightly north of the observed position and is 2–3 hPa too low. Antarctic katabatic winds are similar to observations in magnitude and regional variation. The Antarctic surface wind stress is estimated to be 30%–50% too strong in some regions. Polar tropospheric temperatures are 2°–4°C colder than observations, mostly in the summer season. Low-level winter inversions over the Arctic Ocean are only 3°–4°C, rather than the observed 10°C. In the Antarctic midcontinent they are around 25°–30°C (about 5° stronger than observed) and continue to be stronger than observed along the coast. Although water vapor column is uniformly low by 10%–20% compared to analyses in both polar regions, the regional patterns of minima over Greenland and the East Antarctic plateau are well represented. Annual 70° to pole CCM3 values are 5.8 kg m−2 for the Arctic and 1.7 kg m−2 for the Antarctic. The regional distribution of precipitation minus evaporation compares reasonably with analyses. The annual 70° to pole values are 18.1 cm yr−1, which are close to the most recent observational estimates of 16 to 18 cm yr−1 in the Arctic and 18.4 ± 3.7 cm yr−1 in the Antarctic. In both polar regions, summer surface energy budgets are estimated to be low by roughly 20 W m−2.
Suggestions as to causes of simulation deficiencies are 1) polar heat sinks that are too strong; 2) inadequate representation of sea-ice–atmosphere heat exchange, due to lack of fractional coverage of sea ice of variable thickness; 3) effects of low horizontal resolution; and 4) biased extrapolar influence.
Abstract
Present-day Arctic and Antarctic climate of the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3) is presented. The CCM3 simulation is from a prescribed and interannually varying sea surface temperature integration from January 1979 through August 1993. Observations from a variety of sources, including the European Centre for Medium-Range Weather Forecasts analyses, rawinsonde, and surface station data, are used for validation of CCM3’s polar climate during this period. Overall, CCM3 can simulate many important polar climatic features and in general is an incremental improvement over CCM2.
The 500-hPa polar vortex minima are too deep by 50–100 m and too zonally symmetric. The Arctic sea level pressure maximum is displaced poleward, while the Icelandic region minimum is extended toward Europe, and the Aleutian region minimum is extended toward Asia. The Antarctic circumpolar trough of low sea level pressure is slightly north of the observed position and is 2–3 hPa too low. Antarctic katabatic winds are similar to observations in magnitude and regional variation. The Antarctic surface wind stress is estimated to be 30%–50% too strong in some regions. Polar tropospheric temperatures are 2°–4°C colder than observations, mostly in the summer season. Low-level winter inversions over the Arctic Ocean are only 3°–4°C, rather than the observed 10°C. In the Antarctic midcontinent they are around 25°–30°C (about 5° stronger than observed) and continue to be stronger than observed along the coast. Although water vapor column is uniformly low by 10%–20% compared to analyses in both polar regions, the regional patterns of minima over Greenland and the East Antarctic plateau are well represented. Annual 70° to pole CCM3 values are 5.8 kg m−2 for the Arctic and 1.7 kg m−2 for the Antarctic. The regional distribution of precipitation minus evaporation compares reasonably with analyses. The annual 70° to pole values are 18.1 cm yr−1, which are close to the most recent observational estimates of 16 to 18 cm yr−1 in the Arctic and 18.4 ± 3.7 cm yr−1 in the Antarctic. In both polar regions, summer surface energy budgets are estimated to be low by roughly 20 W m−2.
Suggestions as to causes of simulation deficiencies are 1) polar heat sinks that are too strong; 2) inadequate representation of sea-ice–atmosphere heat exchange, due to lack of fractional coverage of sea ice of variable thickness; 3) effects of low horizontal resolution; and 4) biased extrapolar influence.
Abstract
Present-day Arctic and Antarctic radiation budgets of the National Center for Atmospheric Research Community Climate Model version 3 (CCM3) are presented. The CCM3 simulation is from a prescribed and interannually varying sea surface temperature integration from January 1979 through August 1993. Earth Radiation Budget Experiment (ERBE) data from 1985 through 1989 are used for validation of top-of-atmosphere (TOA) absorbed shortwave radiation (ASR) and outgoing longwave radiation (OLR). Summer ASR in both polar regions is less than the observations by about 20 W m−2. While the annual mean OLR in both polar regions is only 2–3 W m−2 less than the ERBE data, the seasonal amplitude in OLR of 40 W m−2 is smaller than the observed of 55–60 W m−2. The annual polar TOA radiation balance is smaller than observations by 5–10 W m−2. Compared to selected model and observational surface data, downward shortwave (SW) is too small by 50–70 W m−2 and downward longwave (LW) too large by 10–30 W m−2. Surface downward LW in clear atmospheres is too small by 10–20 W m−2. The absence of sea-ice melt ponds results in 10–20 W m−2 too much SW absorption during early summer and from 20 to 40 W m−2 too little during late summer. Summer cloud covers are reasonably well simulated, but winter low cloud cover is too high by 0.5–0.7 compared to surface cloud observations. Comparison with limited satellite and in situ observations indicates cloud water path (CWP) is too high by about a factor of 2. While cloud particle sizes are approximately in the range of observed values, regional variation between maritime and continental droplet sizes is too strong over coastlines. Despite several improvements in CCM3 radiation physics, the accuracy of polar TOA annual radiation balance is degraded against the ERBE data compared to CCM2. Improvement in CCM3 polar radiation budgets will require improved simulation of CWP, clear sky LW, and sea ice albedo.
Abstract
Present-day Arctic and Antarctic radiation budgets of the National Center for Atmospheric Research Community Climate Model version 3 (CCM3) are presented. The CCM3 simulation is from a prescribed and interannually varying sea surface temperature integration from January 1979 through August 1993. Earth Radiation Budget Experiment (ERBE) data from 1985 through 1989 are used for validation of top-of-atmosphere (TOA) absorbed shortwave radiation (ASR) and outgoing longwave radiation (OLR). Summer ASR in both polar regions is less than the observations by about 20 W m−2. While the annual mean OLR in both polar regions is only 2–3 W m−2 less than the ERBE data, the seasonal amplitude in OLR of 40 W m−2 is smaller than the observed of 55–60 W m−2. The annual polar TOA radiation balance is smaller than observations by 5–10 W m−2. Compared to selected model and observational surface data, downward shortwave (SW) is too small by 50–70 W m−2 and downward longwave (LW) too large by 10–30 W m−2. Surface downward LW in clear atmospheres is too small by 10–20 W m−2. The absence of sea-ice melt ponds results in 10–20 W m−2 too much SW absorption during early summer and from 20 to 40 W m−2 too little during late summer. Summer cloud covers are reasonably well simulated, but winter low cloud cover is too high by 0.5–0.7 compared to surface cloud observations. Comparison with limited satellite and in situ observations indicates cloud water path (CWP) is too high by about a factor of 2. While cloud particle sizes are approximately in the range of observed values, regional variation between maritime and continental droplet sizes is too strong over coastlines. Despite several improvements in CCM3 radiation physics, the accuracy of polar TOA annual radiation balance is degraded against the ERBE data compared to CCM2. Improvement in CCM3 polar radiation budgets will require improved simulation of CWP, clear sky LW, and sea ice albedo.
Abstract
The Community Climate System Model, version 4 has revisions across all components. For sea ice, the most notable improvements are the incorporation of a new shortwave radiative transfer scheme and the capabilities that this enables. This scheme uses inherent optical properties to define scattering and absorption characteristics of snow, ice, and included shortwave absorbers and explicitly allows for melt ponds and aerosols. The deposition and cycling of aerosols in sea ice is now included, and a new parameterization derives ponded water from the surface meltwater flux. Taken together, this provides a more sophisticated, accurate, and complete treatment of sea ice radiative transfer. In preindustrial CO2 simulations, the radiative impact of ponds and aerosols on Arctic sea ice is 1.1 W m−2 annually, with aerosols accounting for up to 8 W m−2 of enhanced June shortwave absorption in the Barents and Kara Seas and with ponds accounting for over 10 W m−2 in shelf regions in July. In double CO2 (2XCO2) simulations with the same aerosol deposition, ponds have a larger effect, whereas aerosol effects are reduced, thereby modifying the surface albedo feedback. Although the direct forcing is modest, because aerosols and ponds influence the albedo, the response is amplified. In simulations with no ponds or aerosols in sea ice, the Arctic ice is over 1 m thicker and retains more summer ice cover. Diagnosis of a twentieth-century simulation indicates an increased radiative forcing from aerosols and melt ponds, which could play a role in twentieth-century Arctic sea ice reductions. In contrast, ponds and aerosol deposition have little effect on Antarctic sea ice for all climates considered.
Abstract
The Community Climate System Model, version 4 has revisions across all components. For sea ice, the most notable improvements are the incorporation of a new shortwave radiative transfer scheme and the capabilities that this enables. This scheme uses inherent optical properties to define scattering and absorption characteristics of snow, ice, and included shortwave absorbers and explicitly allows for melt ponds and aerosols. The deposition and cycling of aerosols in sea ice is now included, and a new parameterization derives ponded water from the surface meltwater flux. Taken together, this provides a more sophisticated, accurate, and complete treatment of sea ice radiative transfer. In preindustrial CO2 simulations, the radiative impact of ponds and aerosols on Arctic sea ice is 1.1 W m−2 annually, with aerosols accounting for up to 8 W m−2 of enhanced June shortwave absorption in the Barents and Kara Seas and with ponds accounting for over 10 W m−2 in shelf regions in July. In double CO2 (2XCO2) simulations with the same aerosol deposition, ponds have a larger effect, whereas aerosol effects are reduced, thereby modifying the surface albedo feedback. Although the direct forcing is modest, because aerosols and ponds influence the albedo, the response is amplified. In simulations with no ponds or aerosols in sea ice, the Arctic ice is over 1 m thicker and retains more summer ice cover. Diagnosis of a twentieth-century simulation indicates an increased radiative forcing from aerosols and melt ponds, which could play a role in twentieth-century Arctic sea ice reductions. In contrast, ponds and aerosol deposition have little effect on Antarctic sea ice for all climates considered.
Abstract
In this paper, the authors assess the suitability of the heating fields in the latest version of the NCAR Community Climate Model (CCM2) for modeling the thermal forcing of atmospheric tides. Accordingly, diurnal variations of the surface pressure, outgoing longwave radiation, cloudiness, and precipitation are examined in the CCM2. The fields of radiative, sensible, and latent beating are similarly analyzed. These results are subjectively compared with available data.
Equatorial diurnal surface pressure tides are fairly well simulated by CCM2. The model successfully reproduces the semidiurnal surface pressure tides; however, this may result in part from reflection of wave energy at the upper boundary. The CCM2 large-scale diurnal OLR is generally consistent with observations. The moist-convective scheme in the model is able to reproduce the diurnally varying cloudiness and precipitation patterns associated with land-sea contrasts; however, the amplitudes of CCM2 diurnal continental convective cloudiness are weaker than observations. The CCM2 boundary-layer sensible heating is consistent with a very limited set of observations, and with estimates obtained from simple models of diffusive heating. Although the CCM2 tropospheric solar radiative heating is similar in magnitude to previous estimates, there are substantial differences in the vertical structures. A definitive assessment of the validity of the CCM2 diurnal cycle is precluded by the lack of detailed observations and the limitations of our CCM2 sample. Nevertheless, the authors conclude that the global-scale components of the CCM2 diurnal heating are useful proxies for the true diurnal forcing of the tides.
Abstract
In this paper, the authors assess the suitability of the heating fields in the latest version of the NCAR Community Climate Model (CCM2) for modeling the thermal forcing of atmospheric tides. Accordingly, diurnal variations of the surface pressure, outgoing longwave radiation, cloudiness, and precipitation are examined in the CCM2. The fields of radiative, sensible, and latent beating are similarly analyzed. These results are subjectively compared with available data.
Equatorial diurnal surface pressure tides are fairly well simulated by CCM2. The model successfully reproduces the semidiurnal surface pressure tides; however, this may result in part from reflection of wave energy at the upper boundary. The CCM2 large-scale diurnal OLR is generally consistent with observations. The moist-convective scheme in the model is able to reproduce the diurnally varying cloudiness and precipitation patterns associated with land-sea contrasts; however, the amplitudes of CCM2 diurnal continental convective cloudiness are weaker than observations. The CCM2 boundary-layer sensible heating is consistent with a very limited set of observations, and with estimates obtained from simple models of diffusive heating. Although the CCM2 tropospheric solar radiative heating is similar in magnitude to previous estimates, there are substantial differences in the vertical structures. A definitive assessment of the validity of the CCM2 diurnal cycle is precluded by the lack of detailed observations and the limitations of our CCM2 sample. Nevertheless, the authors conclude that the global-scale components of the CCM2 diurnal heating are useful proxies for the true diurnal forcing of the tides.
Abstract
The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity.
The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from the European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data.
The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2–4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.
The simulated ice-covered area is close to observations in the Southern Hemisphere but too large in the Northern Hemisphere. The ice concentration fields show that the ice cover is too extensive in the North Pacific and subarctic North Atlantic Oceans. The interannual variability of the ice area is similar to observations in both hemispheres. The ice thickness pattern in the Antarctic is realistic but generally too thin away from the continent. The maximum thickness in the Arctic occurs against the Bering Strait, not against the Canadian Archipelago as observed. The ice velocities are stronger than observed in both hemispheres, with a consistently greater turning angle (to the left) in the Southern Hemisphere. They produce a northward ice transport in the Southern Hemisphere that is 3–4 times the satellite-derived value. Sensitivity tests with the sea-ice component show that both the pattern of wind forcing in CSM and the air-ice drag parameter used contribute to the biases in thickness, drift speeds, and transport. Plans for further development of the ice model to incorporate a viscous-plastic ice rheology are presented.
In spite of the biases of the sea-ice simulation, the 300-yr climate simulation exhibits only a small degree of drift in the surface climate without the use of flux adjustment. This suggests a robust stability in the simulated climate in the presence of significant variability.
Abstract
The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity.
The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from the European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data.
The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2–4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.
The simulated ice-covered area is close to observations in the Southern Hemisphere but too large in the Northern Hemisphere. The ice concentration fields show that the ice cover is too extensive in the North Pacific and subarctic North Atlantic Oceans. The interannual variability of the ice area is similar to observations in both hemispheres. The ice thickness pattern in the Antarctic is realistic but generally too thin away from the continent. The maximum thickness in the Arctic occurs against the Bering Strait, not against the Canadian Archipelago as observed. The ice velocities are stronger than observed in both hemispheres, with a consistently greater turning angle (to the left) in the Southern Hemisphere. They produce a northward ice transport in the Southern Hemisphere that is 3–4 times the satellite-derived value. Sensitivity tests with the sea-ice component show that both the pattern of wind forcing in CSM and the air-ice drag parameter used contribute to the biases in thickness, drift speeds, and transport. Plans for further development of the ice model to incorporate a viscous-plastic ice rheology are presented.
In spite of the biases of the sea-ice simulation, the 300-yr climate simulation exhibits only a small degree of drift in the surface climate without the use of flux adjustment. This suggests a robust stability in the simulated climate in the presence of significant variability.
Abstract
New features that may affect the behavior of the upper ocean in the Community Climate System Model version 3 (CCSM3) are described. In particular, the addition of an idealized diurnal cycle of solar forcing where the daily mean solar radiation received in each daily coupling interval is distributed over 12 daylight hours is evaluated. The motivation for this simple diurnal cycle is to improve the behavior of the upper ocean, relative to the constant forcing over each day of previous CCSM versions. Both 1- and 3-h coupling intervals are also considered as possible alternatives that explicitly resolve the diurnal cycle of solar forcing. The most prominent and robust effects of all these diurnal cycles are found in the tropical oceans, especially in the Pacific. Here, the mean equatorial sea surface temperature (SST) is warmed by as much as 1°C, in better agreement with observations, and the mean boundary layer depth is reduced. Simple rectification of the diurnal cycle explains about half of the shallowing, but less than 0.1°C of the warming. The atmospheric response to prescribed warm SST anomalies of about 1°C displays a very different heat flux signature. The implication, yet to be verified, is that large-scale air–sea coupling is a prime mechanism for amplifying the rectified, daily averaged SST signals seen by the atmosphere. Although the use of upper-layer temperature for SST in CCSM3 underestimates the diurnal cycle of SST, many of the essential characteristics of diurnal cycling within the equatorial ocean are reproduced, including boundary layer depth, currents, and the parameterized vertical heat and momentum fluxes associated with deep-cycle turbulence. The conclusion is that the implementation of an idealized diurnal cycle of solar forcing may make more frequent ocean coupling and its computational complications unnecessary as improvements to the air–sea coupling in CCSM3 continue. A caveat here is that more frequent ocean coupling tends to reduce the long-term cooling trends typical of CCSM3 by heating already too warm ocean depths, but longer integrations are needed to determine robust features. A clear result is that the absence of diurnal solar forcing of the ocean has several undesirable consequences in CCSM3, including too large ENSO variability, much too cold Pacific equatorial SST, and no deep-cycle turbulence.
Abstract
New features that may affect the behavior of the upper ocean in the Community Climate System Model version 3 (CCSM3) are described. In particular, the addition of an idealized diurnal cycle of solar forcing where the daily mean solar radiation received in each daily coupling interval is distributed over 12 daylight hours is evaluated. The motivation for this simple diurnal cycle is to improve the behavior of the upper ocean, relative to the constant forcing over each day of previous CCSM versions. Both 1- and 3-h coupling intervals are also considered as possible alternatives that explicitly resolve the diurnal cycle of solar forcing. The most prominent and robust effects of all these diurnal cycles are found in the tropical oceans, especially in the Pacific. Here, the mean equatorial sea surface temperature (SST) is warmed by as much as 1°C, in better agreement with observations, and the mean boundary layer depth is reduced. Simple rectification of the diurnal cycle explains about half of the shallowing, but less than 0.1°C of the warming. The atmospheric response to prescribed warm SST anomalies of about 1°C displays a very different heat flux signature. The implication, yet to be verified, is that large-scale air–sea coupling is a prime mechanism for amplifying the rectified, daily averaged SST signals seen by the atmosphere. Although the use of upper-layer temperature for SST in CCSM3 underestimates the diurnal cycle of SST, many of the essential characteristics of diurnal cycling within the equatorial ocean are reproduced, including boundary layer depth, currents, and the parameterized vertical heat and momentum fluxes associated with deep-cycle turbulence. The conclusion is that the implementation of an idealized diurnal cycle of solar forcing may make more frequent ocean coupling and its computational complications unnecessary as improvements to the air–sea coupling in CCSM3 continue. A caveat here is that more frequent ocean coupling tends to reduce the long-term cooling trends typical of CCSM3 by heating already too warm ocean depths, but longer integrations are needed to determine robust features. A clear result is that the absence of diurnal solar forcing of the ocean has several undesirable consequences in CCSM3, including too large ENSO variability, much too cold Pacific equatorial SST, and no deep-cycle turbulence.
Abstract
The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
Abstract
The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
Abstract
The Community Climate System Model, version 4 (CCSM4) is used to assess the climate impact of wind-generated near-inertial waves (NIWs). Even with high-frequency coupling, CCSM4 underestimates the strength of NIWs, so that a parameterization for NIWs is developed and included into CCSM4. Numerous assumptions enter this parameterization, the core of which is that the NIW velocity signal is detected during the model integration, and amplified in the shear computation of the ocean surface boundary layer module. It is found that NIWs deepen the ocean mixed layer by up to 30%, but they contribute little to the ventilation and mixing of the ocean below the thermocline. However, the deepening of the tropical mixed layer by NIWs leads to a change in tropical sea surface temperature and precipitation. Atmospheric teleconnections then change the global sea level pressure fields so that the midlatitude westerlies become weaker. Unfortunately, the magnitude of the real air-sea flux of NIW energy is poorly constrained by observations; this makes the quantitative assessment of their climate impact rather uncertain. Thus, a major result of the present study is that because of its importance for global climate the uncertainty in the observed tropical NIW energy has to be reduced.
Abstract
The Community Climate System Model, version 4 (CCSM4) is used to assess the climate impact of wind-generated near-inertial waves (NIWs). Even with high-frequency coupling, CCSM4 underestimates the strength of NIWs, so that a parameterization for NIWs is developed and included into CCSM4. Numerous assumptions enter this parameterization, the core of which is that the NIW velocity signal is detected during the model integration, and amplified in the shear computation of the ocean surface boundary layer module. It is found that NIWs deepen the ocean mixed layer by up to 30%, but they contribute little to the ventilation and mixing of the ocean below the thermocline. However, the deepening of the tropical mixed layer by NIWs leads to a change in tropical sea surface temperature and precipitation. Atmospheric teleconnections then change the global sea level pressure fields so that the midlatitude westerlies become weaker. Unfortunately, the magnitude of the real air-sea flux of NIW energy is poorly constrained by observations; this makes the quantitative assessment of their climate impact rather uncertain. Thus, a major result of the present study is that because of its importance for global climate the uncertainty in the observed tropical NIW energy has to be reduced.
Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.
Abstract
A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community. CAM Version 3 (CAM3) is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model. The dynamics and physics in CAM3 have been changed substantially compared to implementations in previous versions. CAM3 includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics through an explicit set of adjustable parameters governing the model time step, cloud parameterizations, and condensation processes. The model includes major modifications to the parameterizations of moist processes, radiation processes, and aerosols. These changes have improved several aspects of the simulated climate, including more realistic tropical tropopause temperatures, boreal winter land surface temperatures, surface insolation, and clear-sky surface radiation in polar regions. The variation of cloud radiative forcing during ENSO events exhibits much better agreement with satellite observations. Despite these improvements, several systematic biases reduce the fidelity of the simulations. These biases include underestimation of tropical variability, errors in tropical oceanic surface fluxes, underestimation of implied ocean heat transport in the Southern Hemisphere, excessive surface stress in the storm tracks, and offsets in the 500-mb height field and the Aleutian low.
Abstract
A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community. CAM Version 3 (CAM3) is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model. The dynamics and physics in CAM3 have been changed substantially compared to implementations in previous versions. CAM3 includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics through an explicit set of adjustable parameters governing the model time step, cloud parameterizations, and condensation processes. The model includes major modifications to the parameterizations of moist processes, radiation processes, and aerosols. These changes have improved several aspects of the simulated climate, including more realistic tropical tropopause temperatures, boreal winter land surface temperatures, surface insolation, and clear-sky surface radiation in polar regions. The variation of cloud radiative forcing during ENSO events exhibits much better agreement with satellite observations. Despite these improvements, several systematic biases reduce the fidelity of the simulations. These biases include underestimation of tropical variability, errors in tropical oceanic surface fluxes, underestimation of implied ocean heat transport in the Southern Hemisphere, excessive surface stress in the storm tracks, and offsets in the 500-mb height field and the Aleutian low.