Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: Buwen Dong x
  • Refine by Access: All Content x
Clear All Modify Search
Buwen Dong

Abstract

Observations show the asymmetric nature of El Niño and La Niña sea surface temperature (SST) anomalies. Warm events are often stronger than cold events. This asymmetric behavior is an important feature that can be used to validate coupled models to test their ability to represent the climate system. The asymmetry of El Niño and La Niña SST anomalies has been investigated in a simulation of the Hadley Centre eddy-permitting coupled general circulation model. It is found that the asymmetric behavior is captured by the model with SST anomalies associated with strong El Niño events being greater than those associated with strong La Niña events. The pattern of the SST asymmetry also bears some similar characteristics to those based on observations despite the deficiency that SST anomalies associated with both El Niño and La Niña extend too far westward in the model.

Through a heat budget analysis of the ocean mixed layer, it is shown that nonlinear dynamic heating (NDH) is important in generating intense El Niño and the SST asymmetry between El Niño and La Niña events, especially in the eastern tropical Pacific Ocean. This nonlinear dynamic heating enhances the amplitude of El Niño and reduces the amplitude of La Niña, and therefore leads to the asymmetry between El Niño and La Niña events, with El Niño being stronger. However, the skewness and asymmetry in the model are relatively weak, being consistent with a relatively weak nonlinear dynamical heating. It is also shown that the eastward-propagating feature of subsurface anomalies provides a favorable phase relationship between temperature and current anomalies that results in strong nonlinear dynamical heating that tends to produce stronger El Niños. In addition, in the model simulation, the nonlinear nature of zonal wind stress anomalies between El Niño and La Niña events also plays an important role in the central tropical Pacific. These different mechanisms work constructively to determine the asymmetry between El Niño and La Niña events in the model, and they are similar to those proposed in recent studies based on observations. The ability of the model to simulate this asymmetric feature is encouraging and offers hope to the challenge of predicting the amplitude of strong El Niño events.

Full access
Qin Su and Buwen Dong

Abstract

Observational analysis indicates significant decadal changes in daytime, nighttime, and compound (both daytime and nighttime) heat waves (HWs) over China across the mid-1990s, featuring a rapid increase in frequency, intensity, and spatial extent. The variations of these observed decadal changes are assessed by the comparison between the present day (PD) of 1994–2011 and the early period (EP) of 1964–81. The compound HWs change most remarkably in all three aspects, with frequency averaged over China in the PD tripling that in the EP and intensity and spatial extent nearly doubling. The daytime and nighttime HWs also change significantly in all three aspects. A set of numerical experiments is used to investigate the drivers and physical processes responsible for the decadal changes of the HWs. Results indicate the predominant role of the anthropogenic forcing, including changes in greenhouse gas (GHG) concentrations and anthropogenic aerosol (AA) emissions in the HW decadal changes. The GHG changes have dominant impacts on the three types of HWs, while the AA changes make significant influences on daytime HWs. The GHG changes increase the frequency, intensity, and spatial extent of the three types of HWs over China both directly via the strengthened greenhouse effect and indirectly via land–atmosphere and circulation feedbacks in which GHG-change-induced warming in sea surface temperature plays an important role. The AA changes decrease the frequency and intensity of daytime HWs over Southeastern China through mainly aerosol–radiation interaction, but increase the frequency and intensity of daytime HWs over Northeastern China through AA-change-induced surface–atmosphere feedbacks and dynamical changes related to weakened East Asian summer monsoon.

Open access
Buwen Dong and Rowan T. Sutton

Abstract

Interdecadal variability of the Atlantic thermohaline circulation (THC) is studied in the third version of the Hadley Centre global coupled atmosphere–ocean sea-ice general circulation model (HadCM3). A diagnostic approach is used to elucidate the mechanism that governs the variability and its impacts on climate. An irregular and heavily damped THC oscillation with a period around 25 yr is identified. The oscillation appears to be forced by the atmosphere but the ocean is responsible for setting the time scale. Following a minimum in the THC, the mechanism for phase reversal involves the accumulation of cold water in the subpolar gyre, leading to an acceleration of the gyre circulation and the North Atlantic Current. This acceleration increases the transport of saline waters into the regions of active deep convection, raising the upper-ocean density and leading, after adjustment, to acceleration of the THC. The atmosphere stimulates this THC variability in two ways: 1) by forcing the subpolar gyre through (North Atlantic Oscillation) NAO-related wind stress curl and heat flux anomalies; and 2) by direct forcing of the region of active deep convection, also through wind stress curl and heat flux anomalies. The latter is not closely related to the NAO. The mechanism for phase reversal has many similarities to that found in a previous study with a much lower resolution coupled model, suggesting that this mechanism may be quite robust. However the time scale, and details of the atmospheric forcing, differ.

The THC variability in HadCM3 has significant impacts on the atmosphere not just in the Atlantic region but also more widely, throughout the global Tropics. The mechanism involves modulation by the THC of the cross-equator SST gradient in the tropical Atlantic. The SST anomalies induce a displacement of the ITCZ in the Atlantic basin with knock-on effects over the other ocean basins. These findings highlight the potential importance of the Atlantic THC as a cause of interdecadal climate variability on a global scale.

Full access
Buwen Dong and Paul J. Valdes

Abstract

The U.K. University Global Atmospheric Modeling Programme GCM is used to investigate whether the growth of Northern Hemisphere ice sheets could have been initiated by changes of orbital parameters and sea surface temperature. Two different orbital configurations, corresponding to the present day and 115 kyr BP are used. The reduced summer solar insulation in the Northern Hemisphere results in a decrease of the surface temperature by 4° to 10°C in the northern continents and to perennial snow in some high-latitude regions. Therefore, the model results support the hypothesis that a deficit of summer insulation can create conditions favorable for initiation of ice sheet growth in the Northern Hemisphere. A decreased sea surface temperature northward of 65°N during the Northern Hemisphere summer may contribute to the maintenance of ice sheets. A simple mixed-layer ocean model coupled to the GCM indicates that the changes of sea surface temperature and extension of sea ice due to insulation changes play an important role in inception of the Fennoscandian, Laurentide, and Cordilleran ice sheets. The model results suggest that the regions of greatest sensitivity for ice initiation are the Canadian Archipelago, Baffin Island, Tibetan Plateau, Scandinavia, Siberia, Alaska, and Keewatin, where changing orbital parameters to 115 kyr BP results in the snow cover remaining throughout the warmer summer, leading to long-term snow accumulation. The model results are in general agreement with geological evidence and are the first time that a GCM coupled with a mixed layer ocean has reproduced the inception of the Northern Hemisphere ice sheets.

Full access
Buwen Dong and Paul J. Valdes

Abstract

The climate at the last glacial maximum (LGM) has been simulated using the U.K. Universities Global Atmospheric Modeling Programme (UGAMP) general circulation model (GCM) truncated at total wavenumbers 21, 42, and 63 (T21, T42, and T63) with prescribed SSTs based on the Climate: Long-Range Investigation Mapping and Prediction Study data. Consistent with the Paleoclimate Modeling Intercomparison Project, the other boundary conditions include the changes in ice sheet topography and geography, a lower sea level, a lower concentration of CO2 in the atmosphere, and a slightly different insolation pattern at the top of the atmosphere. The influence of the model horizontal resolution on the simulated global climate and regional circulation changes has been analyzed.

The simulations indicate that both the global and regional climate changes due to the imposed ice age boundary conditions are affected by the model horizontal resolution. The largest climate change differences occur when the model horizontal resolution increases from T21 to T42. Further increase in resolution to T63 only results in quantitative differences. However, for some variables, such as measures of storm track activity, the LGM simulation shows that there are clear systematic differences between T42 and T63. This result was not seen in the equivalent fields at present day. The regional climate changes simulated in a lower-resolution model (T21) differ significantly from those in higher-resolution models, because of the poor simulations of planetary waves and storm tracks. Results also imply that the insensitivity of simulated storm tracks to model horizontal resolution change from T42 to T63 at present day may not be applicable to a different climate regime. The lower-resolution model cannot reproduce the present-day climate as accurately as the high-resolution model can. In addition, the simulated climate changes in the lower-resolution model due to ice age boundary conditions in some regions contradict those simulated with higher-resolution models with the latter giving better agreement with geological evidence. The authors conclude that a higher-resolution model, at least T42, is needed for the UGAMP GCM to simulate climate changes.

Full access
Buwen Dong and Rowan T. Sutton

Abstract

A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability.

In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.

Full access
Ying Li, Riyu Lu, and Buwen Dong

Abstract

In this study, the authors evaluate the (El Niño–Southern Oscillation) ENSO–Asian monsoon interaction in a version of the Hadley Centre coupled ocean–atmosphere general circulation model (CGCM) known as HadCM3. The main focus is on two evolving anomalous anticyclones: one located over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). These two anomalous anticyclones are closely related to the developing and decaying phases of the ENSO and play a crucial role in linking the Asian monsoon to ENSO. It is found that the HadCM3 can well simulate the main features of the evolution of both anomalous anticyclones and the related SST dipoles, in association with the different phases of the ENSO cycle.

By using the simulated results, the authors examine the relationship between the WNP/SIO anomalous anticyclones and the ENSO cycle, in particular the biennial component of the relationship. It is found that a strong El Niño event tends to be followed by a more rapid decay and is much more likely to become a La Niña event in the subsequent winter. The twin anomalous anticyclones in the western Pacific in the summer of a decaying El Niño are crucial for the transition from an El Niño into a La Niña. The El Niño (La Niña) events, especially the strong ones, strengthen significantly the correspondence between the SIO anticyclonic (cyclonic) anomaly in the preceding autumn and WNP anticyclonic (cyclonic) anomaly in the subsequent spring, and favor the persistence of the WNP anomaly from spring to summer. The present results suggest that both El Niño (La Niña) and the SIO/WNP anticyclonic (cyclonic) anomalies are closely tied with the tropospheric biennial oscillation (TBO). In addition, variability in the East Asian summer monsoon, which is dominated by the internal atmospheric variability, seems to be responsible for the appearance of the WNP anticyclonic anomaly through an upper-tropospheric meridional teleconnection pattern over the western and central Pacific.

Full access
Fangxing Tian, Nicholas P. Klingaman, and Buwen Dong

Abstract

Subseasonal heatwave-driven concurrent hot and dry extreme events (HDEs) can cause substantial damage to crops, and hence to lives and livelihoods. However, the physical processes that lead to these devastating events are not well understood. Based on observations and reanalysis data for 1979–2016 over China, we show that HDEs occur preferentially over central and eastern China (CEC) and southern China (SC), with a maximum of three events per year along the Yangtze Valley. The probability of longer-lived and potentially more damaging HDEs is larger in SC than in CEC. Over SC the key factors of HDEs—positive anomalies of surface air temperature and evapotranspiration, and negative anomalies of soil moisture—begin two pentads before maximizing at the peak of the HDEs. These anomalies occur south of a positive height anomaly at 200 hPa, associated with a large-scale subsidence anomaly. The processes over CEC are similar to those for SC, but the anomalies begin one pentad before the peak. HDE frequency is strongly related to the Silk Road pattern and the boreal summer intraseasonal oscillation. Positive phases of the Silk Road pattern and suppressed phases of the boreal summer intraseasonal oscillation are associated with positive height anomalies over CEC and SC, increasing HDE frequency by about 35%–54% relative to the climatological mean. Understanding the effects of subseasonal and seasonal atmospheric circulation variability, such as the Silk Road pattern and boreal summer intraseasonal oscillation, on HDEs is important to improve HDE predictions over China.

Open access
Buwen Dong, Rowan T. Sutton, Len Shaffrey, and Nicholas P. Klingaman

Abstract

There is still no consensus about the best methodology for attributing observed changes in climate or climate events. One widely used approach relies on experiments in which the time periods of interest are simulated using an atmospheric general circulation model (AGCM) forced by prescribed sea surface temperatures (SSTs), with and without estimated anthropogenic influences. A potential limitation of such experiments is the lack of explicit atmosphere–ocean coupling; therefore a key question is whether the attribution statements derived from such studies are in fact robust. In this research the authors have carried out climate model experiments to test attribution conclusions in a situation where the answer is known—a so-called perfect model approach. The study involves comparing attribution conclusions for decadal changes derived from experiments with a coupled climate model (specifically an AGCM coupled to an ocean mixed-layer model) with conclusions derived from parallel experiments with the same AGCM forced by SSTs derived from the coupled model simulations. Results indicate that attribution conclusions for surface air temperature changes derived from AGCM experiments are generally robust and not sensitive to air–sea coupling. However, changes in seasonal mean and extreme precipitations, and circulation in some regions, show large sensitivity to air–sea coupling, notably in the summer monsoons over East Asia and Australia. Comparison with observed changes indicates that the coupled simulations generally agree better with observations. These results demonstrate that the AGCM-based attribution method has limitations and may lead to erroneous attribution conclusions in some regions for local circulation and mean and extreme precipitation. The coupled mixed-layer model used in this study offers an alternative and, in some respects, superior tool for attribution studies.

Full access
Ed Hawkins, Buwen Dong, Jon Robson, Rowan Sutton, and Doug Smith

Abstract

Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts.

The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.

Full access