Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: C. A. Schlosser x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
C. Adam Schlosser
,
Alan Robock
,
Konstantin Ya Vinnikov
,
Nina A. Speranskaya
, and
Yongkang Xue

Abstract

Off-line simulations of improved bucket hydrology and Simplified Simple Biosphere (SSiB) models are performed for a grassland vegetation catchment region, located at the Valdai water-balance research station in Russia, forced by observed meteorological and simulated actinometric data for 1966–83. Evaluation of the model simulations is performed using observations of total soil moisture in the top 1 m, runoff, evaporation, snow depth, and water-table depth made within the catchment. The Valdai study demonstrates that using only routine meteorological measurements, long-term simulations of land-surface schemes suitable for model evaluation can be made. The Valdai dataset is available for use in the evaluation of other land-surface schemes.

Both the SSiB and the bucket models reproduce the observed hydrology averaged over the simulation period (1967–83) and its interannual variability reasonably well. However, the models’ soil moisture interannual variability is too low during the fall and winter when compared to observations. In addition, some discrepancies in the models’ seasonal behavior with respect to observations are seen. The models are able to reproduce extreme hydrological events to some degree, but some inconsistencies in the model mechanisms are seen. The bucket model’s soil-moisture variability is limited by its inability to rise above its prescribed field capacity for the case where the observed water table rises into the top 1-m layer of soil, which can lead to erroneous simulations of evaporation and runoff. SSiB’s snow depth simulations are generally too low due to high evaporation from the snow surface. SSiB typically produces drainage out of its bottom layer during the summer, which appears inconsistent to the runoff observations of the catchment.

Full access
C. Adam Schlosser
,
Andrew G. Slater
,
Alan Robock
,
Andrew J. Pitman
,
Konstantin Ya. Vinnikov
,
Ann Henderson-Sellers
,
Nina A. Speranskaya
,
Ken Mitchell
, and
The PILPS 2(D) Contributors

Abstract

The Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) aims to improve understanding and modeling of land surface processes. PILPS phase 2(d) uses a set of meteorological and hydrological data spanning 18 yr (1966–83) from a grassland catchment at the Valdai water-balance research site in Russia. A suite of stand-alone simulations is performed by 21 land surface schemes (LSSs) to explore the LSSs’ sensitivity to downward longwave radiative forcing, timescales of simulated hydrologic variability, and biases resulting from single-year simulations that use recursive spinup. These simulations are the first in PILPS to investigate the performance of LSSs at a site with a well-defined seasonal snow cover and frozen soil. Considerable model scatter for the control simulations exists. However, nearly all the LSS scatter in simulated root-zone soil moisture is contained within the spatial variability observed inside the catchment. In addition, all models show a considerable sensitivity to longwave forcing for the simulation of the snowpack, which during the spring melt affects runoff, meltwater infiltration, and subsequent evapotranspiration. A greater sensitivity of the ablation, compared to the accumulation, of the winter snowpack to the choice of snow parameterization is found. Sensitivity simulations starting at prescribed conditions with no spinup demonstrate that the treatment of frozen soil (moisture) processes can affect the long-term variability of the models. The single-year recursive runs show large biases, compared to the corresponding year of the control run, that can persist through the entire year and underscore the importance of performing multiyear simulations.

Full access