Search Results

You are looking at 1 - 10 of 20 items for :

  • Author or Editor: C. R. Wood x
  • Refine by Access: All Content x
Clear All Modify Search
Rex C. Wood
,
Richard K. Olson
, and
Andrew R. McFarland

Abstract

The air ejector filter sampler is a balloon-borne device designed to collect particulate matter from very large volumes (105 ft2) of stratospheric air at altitudes between 50,000 and 130,000 ft. This equipment utilize an ejector pump to pull air through 2 ft2 of Institute of Paper Chemistry (IPC) #1478 filter paper at rates on the order of 1000 cfm. Use of this unit has permitted an extension of the U.S. Atomic Energy Commission operational sampling program to higher attitudes than previously allowed by battery powered electro-mechanical systems. Performance of the sampler during a successful operational series conducted in 1965 by the U.S. Air Force at San Angelo, Texas, and Eielson AFB, Alaska, has confirmed pre-program estimates of system reliability.

Full access
LAURENCE W. FOSKETT
,
NORMAN B. FOSTER
,
WILLIAM R. THICKSTUN
, and
REX C. WOOD

Abstract

A recording infrared absorption hygrometer which measures the absolute humidity in a 1-meter light path is described. Record is obtained on a remote self-balancing potentiometer. Use is made of the 1.37 µ water vapor absorption band and a 1.24 µ reference band. Isolation is by means of transmission type interference band-pass light filters. Infrared detection is by means of a lead sulfide photocell and amplifier. Isolation filters are contained on a sector wheel which is rotated to chop an infrared beam. A self-balancing null system is employed whereby the energy in the absorption band is kept equal to the energy in the reference band at all times. Balance is maintained by automatically varying the temperature of the lamp supplying the infrared energy, and the temperature of the lamp is a measure of the water vapor in the sensing path. An index of the lamp temperature is obtained by means of a monitor photocell, and meter or recorder. Included is a discussion on the calibration and field tests made on the instrument at the Weather Bureau Laboratories, Washington, D. C.

Full access
C. R. Wood
,
R. D. Kouznetsov
,
R. Gierens
,
A. Nordbo
,
L. Järvi
,
M. A. Kallistratova
, and
J. Kukkonen

Abstract

Two commercial large-aperture scintillometers, Scintec BLS900, were tested on pathlengths of 1840 and 4200 m at about 45–65 m above ground in Helsinki, Finland. From July 2011 through June 2012, large variability in diurnal and annual cycles of both the temperature structure parameter and sensible heat flux were observed. Scintillometer data were compared with data from two eddy-covariance stations. A robust method was developed for the calculation of from raw sonic-anemometer data. In contrast to many earlier studies that solely present the values of , the main focus here is on comparisons of itself. This has advantages, because optical-wavelength scintillometers measure with few assumptions, while the determination of implies the applicability of the Monin–Obukhov similarity theory, which has several inherent limitations. The histograms of compare well between sonic and scintillometer. In-depth analysis is focused on one of the scintillometer paths: both and comparisons gave similar and surprisingly high correlation coefficients (0.85 for and 0.84–0.95 for in unstable conditions), given the differences between the two measurement techniques, substantial sensor separation, and different source areas.

Full access
C. R. Mechoso
,
R. Wood
,
R. Weller
,
C. S. Bretherton
,
A. D. Clarke
,
H. Coe
,
C. Fairall
,
J. T. Farrar
,
G. Feingold
,
R. Garreaud
,
C. Grados
,
J. McWilliams
,
S. P. de Szoeke
,
S. E. Yuter
, and
P. Zuidema

The present paper describes the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS), an international research program focused on the improved understanding and modeling of the southeastern Pacific (SEP) climate system on diurnal to interannual time scales. In the framework of the SEP climate, VOCALS has two fundamental objectives: 1) improved simulations by coupled atmosphere–ocean general circulation models (CGCMs), with an emphasis on reducing systematic errors in the region; and 2) improved estimates of the indirect effects of aerosols on low clouds and climate, with an emphasis on the more precise quantification of those effects. VOCALS major scientific activities are outlined, and selected achievements are highlighted. Activities described include monitoring in the region, a large international field campaign (the VOCALS Regional Experiment), and two model assessments. The program has already produced significant advances in the understanding of major issues in the SEP: the coastal circulation and the diurnal cycle, the ocean heat budget, factors controlling precipitation and formation of pockets of open cells in stratocumulus decks, aerosol impacts on clouds, and estimation of the first aerosol indirect effect. The paper concludes with a brief presentation on VOCALS contributions to community capacity building before a summary of scientific findings and remaining questions.

Full access
R. B. Thorpe
,
J. M. Gregory
,
T. C. Johns
,
R. A. Wood
, and
J. F. B. Mitchell

Abstract

Models of the North Atlantic thermohaline circulation (THC) show a range of responses to the high-latitude warming and freshening characteristic of global warming scenarios. Most simulate a weakening of the THC, with some suggesting possible interruption of the circulation, but others exhibit little change. The mechanisms of the THC response to climate change using the HadCM3 coupled ocean–atmosphere general circulation model, which gives a good simulation of the present-day THC and does not require flux adjustment, were studied. In a range of climate change simulations, the strength of the THC in HadCM3 is proportional to the meridional gradient of steric height (equivalent to column-integrated density) between 30°S and 60°N. During an integration in which CO2 increases at 2% per year for 70 yr, the THC weakens by about 20%, and it stabilizes at this level if the CO2 is subsequently held constant. Changes in surface heat and water fluxes are the cause of the reduction in the steric height gradient that derives the THC weakening, 60% being due to temperature change (greater warming at high latitudes) and 40% to salinity change (decreasing at high latitude, increasing at low latitude). The level at which the THC stabilizes is determined by advective feedbacks. As the circulation slows down, less heat is advected northward, which counteracts the in situ warming. At the same time, northward salinity advection increases because of a strong increase in salinity in the subtropical Atlantic, due to a greater atmospheric export of freshwater from the Atlantic to the Pacific. This change in interbasin transport means that salinity effects stabilize the circulation, in contrast to a single basin model of the THC, where salinity effects are destabilizing. These results suggest that the response of the Atlantic THC to anthropogenic forcing may be partly determined by events occurring outside the Atlantic basin.

Full access
H.H. Jonsson
,
J.C. Wilson
,
C.A. Brock
,
R.G. Knollenberg
,
T.R. Newton
,
J.E. Dye
,
D. Baumgardner
,
S. Borrmann
,
G.V. Ferry
,
R. Pueschel
,
Dave C. Woods
, and
Mike C. Pitts

Abstract

A focused cavity aerosol spectrometer aboard a NASA ER-2 high-altitude aircraft provided high-resolution measurements of the size of the stratospheric particles in the 0.06–2.0-µm-diameter range in flights following the eruption of Mount Pinatubo in 1991. Effects of anisokinetic sampling and evaporation in the sampling system were accounted for by means adapted and specifically developed for this instrument. Calibrations with monodisperse aerosol particles provided the instrument's response matrix, which upon inversion during data reduction yielded the particle size distributions. The resultant dataset is internally consistent and generally shows agreement to within a factor of 2 with comparable measurements simultaneously obtained by a condensation nuclei counter, a forward-scattering spectrometer probe, and aerosol particle impactors, as well as with nearby extinction profiles obtained by satellite measurements and with lidar measurements of backscatter.

Full access
C. R. Wood
,
L. Järvi
,
R. D. Kouznetsov
,
A. Nordbo
,
S. Joffre
,
A. Drebs
,
T. Vihma
,
A. Hirsikko
,
I. Suomi
,
C. Fortelius
,
E. O'Connor
,
D. Moiseev
,
S. Haapanala
,
J. Moilanen
,
M. Kangas
,
A. Karppinen
,
T. Vesala
, and
J. Kukkonen

The Helsinki Urban Boundary-Layer Atmosphere Network (UrBAN: http://urban.fmi.fi) is a dedicated research-grade observational network where the physical processes in the atmosphere above the city are studied. Helsinki UrBAN is the most poleward intensive urban research observation network in the world and thus will allow studying some unique features such as strong seasonality. The network's key purpose is for the understanding of the physical processes in the urban boundary layer and associated fluxes of heat, momentum, moisture, and other gases. A further purpose is to secure a research-grade database, which can be used internationally to validate and develop numerical models of air quality and weather prediction. Scintillometers, a scanning Doppler lidar, ceilometers, a sodar, eddy-covariance stations, and radiometers are used. This equipment is supplemented by auxiliary measurements, which were primarily set up for general weather and/or air-quality mandatory purposes, such as vertical soundings and the operational Doppler radar network. Examples are presented as a testimony to the potential of the network for urban studies, such as (i) evidence of a stable boundary layer possibly coupled to an urban surface, (ii) the comparison of scintillometer data with sonic anemometry above an urban surface, (iii) the application of scanning lidar over a city, and (iv) combination of sodar and lidar to give a fuller range of sampling heights for boundary layer profiling.

Full access
H. G. Hidalgo
,
T. Das
,
M. D. Dettinger
,
D. R. Cayan
,
D. W. Pierce
,
T. P. Barnett
,
G. Bala
,
A. Mirin
,
A. W. Wood
,
C. Bonfils
,
B. D. Santer
, and
T. Nozawa

Abstract

This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier “center” timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.

Full access
Steven C. Hardiman
,
Ian A. Boutle
,
Andrew C. Bushell
,
Neal Butchart
,
Mike J. P. Cullen
,
Paul R. Field
,
Kalli Furtado
,
James C. Manners
,
Sean F. Milton
,
Cyril Morcrette
,
Fiona M. O’Connor
,
Ben J. Shipway
,
Chris Smith
,
David N. Walters
,
Martin R. Willett
,
Keith D. Williams
,
Nigel Wood
,
N. Luke Abraham
,
James Keeble
,
Amanda C. Maycock
,
John Thuburn
, and
Matthew T. Woodhouse

Abstract

A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations.

Full access
L. C. Slivinski
,
G. P. Compo
,
P. D. Sardeshmukh
,
J. S. Whitaker
,
C. McColl
,
R. J. Allan
,
P. Brohan
,
X. Yin
,
C. A. Smith
,
L. J. Spencer
,
R. S. Vose
,
M. Rohrer
,
R. P. Conroy
,
D. C. Schuster
,
J. J. Kennedy
,
L. Ashcroft
,
S. Brönnimann
,
M. Brunet
,
D. Camuffo
,
R. Cornes
,
T. A. Cram
,
F. Domínguez-Castro
,
J. E. Freeman
,
J. Gergis
,
E. Hawkins
,
P. D. Jones
,
H. Kubota
,
T. C. Lee
,
A. M. Lorrey
,
J. Luterbacher
,
C. J. Mock
,
R. K. Przybylak
,
C. Pudmenzky
,
V. C. Slonosky
,
B. Tinz
,
B. Trewin
,
X. L. Wang
,
C. Wilkinson
,
K. Wood
, and
P. Wyszyński

Abstract

The performance of a new historical reanalysis, the NOAA–CIRES–DOE Twentieth Century Reanalysis version 3 (20CRv3), is evaluated via comparisons with other reanalyses and independent observations. This dataset provides global, 3-hourly estimates of the atmosphere from 1806 to 2015 by assimilating only surface pressure observations and prescribing sea surface temperature, sea ice concentration, and radiative forcings. Comparisons with independent observations, other reanalyses, and satellite products suggest that 20CRv3 can reliably produce atmospheric estimates on scales ranging from weather events to long-term climatic trends. Not only does 20CRv3 recreate a “best estimate” of the weather, including extreme events, it also provides an estimate of its confidence through the use of an ensemble. Surface pressure statistics suggest that these confidence estimates are reliable. Comparisons with independent upper-air observations in the Northern Hemisphere demonstrate that 20CRv3 has skill throughout the twentieth century. Upper-air fields from 20CRv3 in the late twentieth century and early twenty-first century correlate well with full-input reanalyses, and the correlation is predicted by the confidence fields from 20CRv3. The skill of analyzed 500-hPa geopotential heights from 20CRv3 for 1979–2015 is comparable to that of modern operational 3–4-day forecasts. Finally, 20CRv3 performs well on climate time scales. Long time series and multidecadal averages of mass, circulation, and precipitation fields agree well with modern reanalyses and station- and satellite-based products. 20CRv3 is also able to capture trends in tropospheric-layer temperatures that correlate well with independent products in the twentieth century, placing recent trends in a longer historical context.

Open access