Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: C. S. B. Grimmond x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Duick T. Young
,
Lee Chapman
,
Catherine L. Muller
,
Xiao-Ming Cai
, and
C. S. B. Grimmond

Abstract

A wide range of environmental applications would benefit from a dense network of air temperature observations. However, with limitations of costs, existing siting guidelines, and risk of damage, new methods are required to gain a high-resolution understanding of spatiotemporal patterns of temperature for agricultural and urban meteorological phenomena such as the urban heat island. With the launch of a new generation of low-cost sensors, it is possible to deploy a network to monitor air temperature at finer spatial resolutions. This study investigates the Aginova Sentinel Micro (ASM) sensor with a custom radiation shield (together less than USD$150) that can provide secure near-real-time air temperature data to a server utilizing existing (or user deployed) Wi-Fi networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors <±0.22°C between −25° and 30°C, with a time constant in ambient air of 110 ±15 s. Subsequent field tests also showed the ASM (in the custom shield) had excellent performance (RMSE = 0.13°C) over a range of meteorological conditions relative to a traceable operational Met Office platinum resistance thermometer. These results indicate that the ASM and radiation shield are more than fit for purpose for dense network deployment in environmental monitoring applications at relatively low cost compared to existing observation techniques.

Full access
Jie Peng
,
C. S. B. Grimmond
,
Xinshu Fu
,
Yuanyong Chang
,
Guangliang Zhang
,
Jibing Guo
,
Chenyang Tang
,
Jie Gao
,
Xiaodong Xu
, and
Jianguo Tan

Abstract

To investigate the boundary layer dynamics of the coastal megacity Shanghai, China, backscatter data measured by a Vaisala CL51 ceilometer are analyzed with a modified ideal curve fitting algorithm. The boundary layer height z i retrieved by this method and from radiosondes compare reasonably overall. Analyses of mobile and stationary ceilometer data provide spatial and temporal characteristics of Shanghai’s boundary layer height. The consistency between when the ceilometer is moving and stationary highlights the potential of mobile observations of transects across cities. An analysis of 16 months of z i measured at the Fengxian site in Shanghai reveals that the diurnal variation of z i in the four seasons follows the expected pattern; for all seasons z i starts to increase at sunrise, reflecting the influence of solar radiation. However, the boundary layer height is generally higher in autumn and winter than in summer and spring (mean hourly averaged z i for days with low cloud fraction at 1100–1200 local time are 900, 654, 934, and 768 m for spring, summer, autumn, and winter, respectively). This is attributed to seasonal differences in the dominant meteorological conditions, including the effects of a sea breeze at the near-coastal Fengxian site. Given the success of the retrieval method, other ceilometers installed across Shanghai are now being analyzed to understand more about the spatial dynamics of z i and to investigate in more detail the effects of prevailing mesoscale circulations and their seasonal dynamics.

Full access