Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Caitlin B. Whalen x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Caitlin B. Whalen


The turbulent energy dissipation rate in the ocean can be measured by using rapidly sampling microstructure shear probes, or by applying a finescale parameterization to coarser-resolution density and/or shear profiles. The two techniques require measurements that are on different spatiotemporal scales and generate dissipation rate estimates that also differ in spatiotemporal scale. Since the distribution of the measured energy dissipation rate is closer to lognormal than normal and fluctuates with the strength of the turbulence, averaging the two approaches on equivalent spatiotemporal scales is critical for accurately comparing the two methods. Here, microstructure data from the 1997 Brazil Basin Tracer Release Experiment (BBTRE) is used to demonstrate that comparing averages of the dissipation rate on different spatiotemporal scales can generate spurious discrepancies of up to a factor of order 10 in regions of strong turbulence and smaller biases of up to a factor of 2 in the presence of weaker turbulence.

Open access