Search Results
You are looking at 1 - 7 of 7 items for :
- Author or Editor: Cameron R. Homeyer x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
Hailstones are a natural hazard that pose a significant threat to property and are responsible for significant economic losses each year in the United States. Detailed understanding of their characteristics is essential to mitigate their impact. Identifying the dynamic and physical factors contributing to hail formation and hailstone sizes is of great importance to weather and climate prediction and policymakers. In this study, we have analyzed the temporal and spatial variabilities of severe hail occurrences over the U.S. southern Great Plains (SGP) states from 2004 to 2016 using two hail datasets: hail reports from the Storm Prediction Center and the newly developed radar-retrieved maximum expected size of hail (MESH). It is found that severe and significant severe hail occurrences have a considerable year-to-year temporal variability in the SGP region. The interannual variabilities have a strong correspondence with sea surface temperature anomalies over the northern Gulf of Mexico and there is no outlier. The year 2016 is identified as an outlier for the correlations with both El Niño–Southern Oscillation (ENSO) and aerosol loading. The correlations with ENSO and aerosol loading are not statistically robust to inclusion of the outlier 2016. Statistical analysis without the outlier 2016 shows that 1) aerosols that may be mainly from northern Mexico have the largest correlation with hail interannual variability among the three factors and 2) meteorological covariation does not significantly contribute to the high correlation. These analyses warrant further investigations of aerosol impacts on hail occurrence.
Abstract
Hailstones are a natural hazard that pose a significant threat to property and are responsible for significant economic losses each year in the United States. Detailed understanding of their characteristics is essential to mitigate their impact. Identifying the dynamic and physical factors contributing to hail formation and hailstone sizes is of great importance to weather and climate prediction and policymakers. In this study, we have analyzed the temporal and spatial variabilities of severe hail occurrences over the U.S. southern Great Plains (SGP) states from 2004 to 2016 using two hail datasets: hail reports from the Storm Prediction Center and the newly developed radar-retrieved maximum expected size of hail (MESH). It is found that severe and significant severe hail occurrences have a considerable year-to-year temporal variability in the SGP region. The interannual variabilities have a strong correspondence with sea surface temperature anomalies over the northern Gulf of Mexico and there is no outlier. The year 2016 is identified as an outlier for the correlations with both El Niño–Southern Oscillation (ENSO) and aerosol loading. The correlations with ENSO and aerosol loading are not statistically robust to inclusion of the outlier 2016. Statistical analysis without the outlier 2016 shows that 1) aerosols that may be mainly from northern Mexico have the largest correlation with hail interannual variability among the three factors and 2) meteorological covariation does not significantly contribute to the high correlation. These analyses warrant further investigations of aerosol impacts on hail occurrence.
Abstract
Long-term radar observations from a subtropical location in southeastern Texas are used to examine the impact of storm systems with tropical or extratropical characteristics on the large-scale circulation. Climatological vertical profiles of the horizontal wind divergence are analyzed for four distinct storm classifications: cold frontal (CF), warm frontal (WF), deep convective upper-level disturbance (DC-ULD), and nondeep convective upper-level disturbances (NC-ULD). DC-ULD systems are characterized by weakly baroclinic or equivalent barotropic environments that are more tropical in nature, while the remaining classifications are representative of common midlatitude systems with varying degrees of baroclinicity. DC-ULD systems are shown to have the highest levels of nondivergence (LND) and implied diabatic heating maxima near 6 km, whereas the remaining baroclinic storm classifications have LND altitudes that are about 0.5–1 km lower. Analyses of climatological mean divergence profiles are also separated by rain regions that are primarily convective, stratiform, or indeterminate. Convective–stratiform separations reveal similar divergence characteristics to those observed in the tropics in previous studies, with higher altitudes of implied heating in stratiform rain regions, suggesting that the convective–stratiform paradigm outlined in previous studies is applicable in the midlatitudes. Divergence profiles that cannot be classified as primarily convective or stratiform are typically characterized by large regions of stratiform rain with areas of embedded convection of shallow to moderate extent (i.e., echo tops <10 km). These indeterminate profiles illustrate that, despite not being very deep and accounting for a relatively small fraction of a given storm system, convection dominates the vertical divergence profile and implied heating in these cases.
Abstract
Long-term radar observations from a subtropical location in southeastern Texas are used to examine the impact of storm systems with tropical or extratropical characteristics on the large-scale circulation. Climatological vertical profiles of the horizontal wind divergence are analyzed for four distinct storm classifications: cold frontal (CF), warm frontal (WF), deep convective upper-level disturbance (DC-ULD), and nondeep convective upper-level disturbances (NC-ULD). DC-ULD systems are characterized by weakly baroclinic or equivalent barotropic environments that are more tropical in nature, while the remaining classifications are representative of common midlatitude systems with varying degrees of baroclinicity. DC-ULD systems are shown to have the highest levels of nondivergence (LND) and implied diabatic heating maxima near 6 km, whereas the remaining baroclinic storm classifications have LND altitudes that are about 0.5–1 km lower. Analyses of climatological mean divergence profiles are also separated by rain regions that are primarily convective, stratiform, or indeterminate. Convective–stratiform separations reveal similar divergence characteristics to those observed in the tropics in previous studies, with higher altitudes of implied heating in stratiform rain regions, suggesting that the convective–stratiform paradigm outlined in previous studies is applicable in the midlatitudes. Divergence profiles that cannot be classified as primarily convective or stratiform are typically characterized by large regions of stratiform rain with areas of embedded convection of shallow to moderate extent (i.e., echo tops <10 km). These indeterminate profiles illustrate that, despite not being very deep and accounting for a relatively small fraction of a given storm system, convection dominates the vertical divergence profile and implied heating in these cases.
Abstract
Following on our study of hail for the southern Great Plains (SGP), we investigated the spatial and temporal hail trends and variabilities for the northern Great Plains (NGP) and the contributing factors for summers (June–August) focusing on the period of 2004–16 using two independent hail datasets. Analysis for an extended period (1994–2016) with the hail reports was also conducted to more reliably investigate the contributing factors. Both severe hail (diameter between 1 and 2 inches) and significant severe hail (SSH; diameter > 2 inches) were examined and similar results were obtained. The occurrence of hail over the NGP demonstrated a large interannual variability, with a positive slope overall. Spatially, the increase is mainly located in the western part of Nebraska, South Dakota, and North Dakota. We find the three major dynamical factors that most likely contribute to the hail interannual variability in the NGP are El Niño–Southern Oscillation (ENSO), the North Atlantic subtropical high (NASH), and the low-level jet (LLJ). With a thermodynamical variable integrated water vapor transport that is strongly controlled by LLJ, the four factors can explain 78% of the interannual variability in the number of SSH reports. Hail occurrences in the La Niña years are higher than the El Niño years since the jet stream is stronger and NASH extends farther into the southeastern United States, thereby strengthening the LLJ and in turn water vapor transport. Interestingly, the important factors impacting hail interannual variability over the NGP are quite different from those for the SGP, except for ENSO.
Abstract
Following on our study of hail for the southern Great Plains (SGP), we investigated the spatial and temporal hail trends and variabilities for the northern Great Plains (NGP) and the contributing factors for summers (June–August) focusing on the period of 2004–16 using two independent hail datasets. Analysis for an extended period (1994–2016) with the hail reports was also conducted to more reliably investigate the contributing factors. Both severe hail (diameter between 1 and 2 inches) and significant severe hail (SSH; diameter > 2 inches) were examined and similar results were obtained. The occurrence of hail over the NGP demonstrated a large interannual variability, with a positive slope overall. Spatially, the increase is mainly located in the western part of Nebraska, South Dakota, and North Dakota. We find the three major dynamical factors that most likely contribute to the hail interannual variability in the NGP are El Niño–Southern Oscillation (ENSO), the North Atlantic subtropical high (NASH), and the low-level jet (LLJ). With a thermodynamical variable integrated water vapor transport that is strongly controlled by LLJ, the four factors can explain 78% of the interannual variability in the number of SSH reports. Hail occurrences in the La Niña years are higher than the El Niño years since the jet stream is stronger and NASH extends farther into the southeastern United States, thereby strengthening the LLJ and in turn water vapor transport. Interestingly, the important factors impacting hail interannual variability over the NGP are quite different from those for the SGP, except for ENSO.
Abstract
Changes in tropical width can have important consequences in sectors including ecosystems, agriculture, and health. Observations suggest tropical expansion over the past 30 years although studies have not agreed on the magnitude of this change. Climate model projections have also indicated an expansion and show similar uncertainty in its magnitude. This study utilizes an objective, longitudinally varying, tropopause break method to define the extent of the tropics at upper levels. The location of the tropopause break is associated with enhanced stratosphere–troposphere exchange and thus its structure influences the chemical composition of the stratosphere. The method shows regional variations in the width of the upper-level tropics in the past and future. Four modern reanalyses show significant contraction of the tropics over the eastern Pacific between 1981 and 2015, and slight but significant expansion in other regions. The east Pacific narrowing contributes to zonal mean narrowing, contradicting prior work, and is attributed to the use of monthly and zonal mean data in prior studies. Six global climate models perform well in representing the climatological location of the tropical boundary. Future projections show a spread in the width trend (from ~0.5° decade−1 of narrowing to ~0.4° decade−1 of widening), with a narrowing projected across the east Pacific and Northern Hemisphere Americas. This study illustrates that this objective tropopause break method that uses instantaneous data and does not require zonal averaging is appropriate for identifying upper-level tropical width trends and the break location is connected with local and regional changes in precipitation.
Abstract
Changes in tropical width can have important consequences in sectors including ecosystems, agriculture, and health. Observations suggest tropical expansion over the past 30 years although studies have not agreed on the magnitude of this change. Climate model projections have also indicated an expansion and show similar uncertainty in its magnitude. This study utilizes an objective, longitudinally varying, tropopause break method to define the extent of the tropics at upper levels. The location of the tropopause break is associated with enhanced stratosphere–troposphere exchange and thus its structure influences the chemical composition of the stratosphere. The method shows regional variations in the width of the upper-level tropics in the past and future. Four modern reanalyses show significant contraction of the tropics over the eastern Pacific between 1981 and 2015, and slight but significant expansion in other regions. The east Pacific narrowing contributes to zonal mean narrowing, contradicting prior work, and is attributed to the use of monthly and zonal mean data in prior studies. Six global climate models perform well in representing the climatological location of the tropical boundary. Future projections show a spread in the width trend (from ~0.5° decade−1 of narrowing to ~0.4° decade−1 of widening), with a narrowing projected across the east Pacific and Northern Hemisphere Americas. This study illustrates that this objective tropopause break method that uses instantaneous data and does not require zonal averaging is appropriate for identifying upper-level tropical width trends and the break location is connected with local and regional changes in precipitation.
Abstract
Recent field campaigns, observational studies, and modeling work have demonstrated that extratropical tropopause-overshooting convection has a substantial, and previously underestimated impact on stratospheric water vapor concentrations. This necessitates improved understanding of how tropopause-overshooting convection will respond to a warming climate. A growing body of research indicates that environments conducive to severe thunderstorms will occur more often and be increasingly unstable in the future, but no study has examined how this may be related to increased overshooting. To rectify this, this study leverages an existing pseudo-global warming (PGW) experiment to evaluate potential future changes in tropopause-overshooting convection over North America. We examine two 10-year simulations consisting of (1) a retrospective period (2003 – 2012) forced by ERA-interim initial and boundary conditions (the control simulation), and (2) the same retrospective period with CMIP5 ensemble-mean high-end emission scenario climate changes added to the initial and boundary conditions (the PGW simulation). Tropopause-overshooting convection in the control simulation is validated against observed overshoots from both ground-based radar observations in the United States and GOES satellite observations over North America. The model is shown to effectively simulate the observed regional distribution, annual cycle, and diurnal cycle of tropopause-overshooting convection. The projected response of tropopause-overshooting convection in the PGW simulation is found to increase more than 250% across the model domain, and the projected seasonal period of frequent tropopause-overshooting convection is shown to extend into late-summer. Additionally, tropopause-overshooting convection with extreme tropopause-relative heights (> 4 km) are more frequent in a warmed climate scenario.
Abstract
Recent field campaigns, observational studies, and modeling work have demonstrated that extratropical tropopause-overshooting convection has a substantial, and previously underestimated impact on stratospheric water vapor concentrations. This necessitates improved understanding of how tropopause-overshooting convection will respond to a warming climate. A growing body of research indicates that environments conducive to severe thunderstorms will occur more often and be increasingly unstable in the future, but no study has examined how this may be related to increased overshooting. To rectify this, this study leverages an existing pseudo-global warming (PGW) experiment to evaluate potential future changes in tropopause-overshooting convection over North America. We examine two 10-year simulations consisting of (1) a retrospective period (2003 – 2012) forced by ERA-interim initial and boundary conditions (the control simulation), and (2) the same retrospective period with CMIP5 ensemble-mean high-end emission scenario climate changes added to the initial and boundary conditions (the PGW simulation). Tropopause-overshooting convection in the control simulation is validated against observed overshoots from both ground-based radar observations in the United States and GOES satellite observations over North America. The model is shown to effectively simulate the observed regional distribution, annual cycle, and diurnal cycle of tropopause-overshooting convection. The projected response of tropopause-overshooting convection in the PGW simulation is found to increase more than 250% across the model domain, and the projected seasonal period of frequent tropopause-overshooting convection is shown to extend into late-summer. Additionally, tropopause-overshooting convection with extreme tropopause-relative heights (> 4 km) are more frequent in a warmed climate scenario.
Abstract
Mesoscale convective systems (MCSs) are frequently observed over the U.S. Great Plains during boreal spring and summer. Here, four types of synoptically favorable environments for spring MCSs and two types each of synoptically favorable and unfavorable environments for summer MCSs are identified using self-organizing maps (SOMs) with inputs from observational data. During spring, frontal systems providing a lifting mechanism and an enhanced Great Plains low-level jet (GPLLJ) providing anomalous moisture are important features identified by SOM analysis for creating favorable dynamical and thermodynamic environments for MCS development. During summer, the composite MCS environment shows small positive convective available potential energy (CAPE) and convective inhibition (CIN) anomalies, which are in stark contrast with the large positive CAPE and negative CIN anomalies in spring. This contrast suggests that summer convection may occur even with weak large-scale dynamical and thermodynamic perturbations so MCSs may be inherently less predictable in summer. The two synoptically favorable environments identified in summer have frontal characteristics and an enhanced GPLLJ, but both shift north compared to spring. The two synoptically unfavorable environments feature enhanced upper-level ridges, but differ in the strength of the GPLLJ. In both seasons, MCS precipitation amount, area, and rate are much larger in the frontal-related MCSs than in nonfrontal MCSs. A large-scale index constructed using pattern correlation between large-scale environments and the synoptically favorable SOM types is found to be skillful for estimating MCS number, precipitation rate, and area in spring, but its explanatory power decreases significantly in summer. The low predictability of summer MCSs deserves further investigation in the future.
Abstract
Mesoscale convective systems (MCSs) are frequently observed over the U.S. Great Plains during boreal spring and summer. Here, four types of synoptically favorable environments for spring MCSs and two types each of synoptically favorable and unfavorable environments for summer MCSs are identified using self-organizing maps (SOMs) with inputs from observational data. During spring, frontal systems providing a lifting mechanism and an enhanced Great Plains low-level jet (GPLLJ) providing anomalous moisture are important features identified by SOM analysis for creating favorable dynamical and thermodynamic environments for MCS development. During summer, the composite MCS environment shows small positive convective available potential energy (CAPE) and convective inhibition (CIN) anomalies, which are in stark contrast with the large positive CAPE and negative CIN anomalies in spring. This contrast suggests that summer convection may occur even with weak large-scale dynamical and thermodynamic perturbations so MCSs may be inherently less predictable in summer. The two synoptically favorable environments identified in summer have frontal characteristics and an enhanced GPLLJ, but both shift north compared to spring. The two synoptically unfavorable environments feature enhanced upper-level ridges, but differ in the strength of the GPLLJ. In both seasons, MCS precipitation amount, area, and rate are much larger in the frontal-related MCSs than in nonfrontal MCSs. A large-scale index constructed using pattern correlation between large-scale environments and the synoptically favorable SOM types is found to be skillful for estimating MCS number, precipitation rate, and area in spring, but its explanatory power decreases significantly in summer. The low predictability of summer MCSs deserves further investigation in the future.
ABSTRACT
The spatiotemporal variability and three-dimensional structures of mesoscale convective systems (MCSs) east of the U.S. Rocky Mountains and their large-scale environments are characterized across all seasons using 13 years of high-resolution radar and satellite observations. Long-lived and intense MCSs account for over 50% of warm season precipitation in the Great Plains and over 40% of cold season precipitation in the southeast. The Great Plains has the strongest MCS seasonal cycle peaking in May–June, whereas in the U.S. southeast MCSs occur year-round. Distinctly different large-scale environments across the seasons have significant impacts on the structure of MCSs. Spring and fall MCSs commonly initiate under strong baroclinic forcing and favorable thermodynamic environments. MCS genesis frequently occurs in the Great Plains near sunset, although convection is not always surface based. Spring MCSs feature both large and deep convection, with a large stratiform rain area and high volume of rainfall. In contrast, summer MCSs often initiate under weak baroclinic forcing, featuring a high pressure ridge with weak low-level convergence acting on the warm, humid air associated with the low-level jet. MCS genesis concentrates east of the Rocky Mountain Front Range and near the southeast coast in the afternoon. The strongest MCS diurnal cycle amplitude extends from the foothills of the Rocky Mountains to the Great Plains. Summer MCSs have the largest and deepest convective features, the smallest stratiform rain area, and the lowest rainfall volume. Last, winter MCSs are characterized by the strongest baroclinic forcing and the largest MCS precipitation features over the southeast. Implications of the findings for climate modeling are discussed.
ABSTRACT
The spatiotemporal variability and three-dimensional structures of mesoscale convective systems (MCSs) east of the U.S. Rocky Mountains and their large-scale environments are characterized across all seasons using 13 years of high-resolution radar and satellite observations. Long-lived and intense MCSs account for over 50% of warm season precipitation in the Great Plains and over 40% of cold season precipitation in the southeast. The Great Plains has the strongest MCS seasonal cycle peaking in May–June, whereas in the U.S. southeast MCSs occur year-round. Distinctly different large-scale environments across the seasons have significant impacts on the structure of MCSs. Spring and fall MCSs commonly initiate under strong baroclinic forcing and favorable thermodynamic environments. MCS genesis frequently occurs in the Great Plains near sunset, although convection is not always surface based. Spring MCSs feature both large and deep convection, with a large stratiform rain area and high volume of rainfall. In contrast, summer MCSs often initiate under weak baroclinic forcing, featuring a high pressure ridge with weak low-level convergence acting on the warm, humid air associated with the low-level jet. MCS genesis concentrates east of the Rocky Mountain Front Range and near the southeast coast in the afternoon. The strongest MCS diurnal cycle amplitude extends from the foothills of the Rocky Mountains to the Great Plains. Summer MCSs have the largest and deepest convective features, the smallest stratiform rain area, and the lowest rainfall volume. Last, winter MCSs are characterized by the strongest baroclinic forcing and the largest MCS precipitation features over the southeast. Implications of the findings for climate modeling are discussed.