Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Carl E. Hane x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
The structure and mechanism for maintenance of the Great Plains squall line thunderstorm are studied through formulation of a two-dimensional, time-dependent numerical model. The environmental conditions known to be favorable for squall line development and maintenance include a convectively unstable air mass whose motion is characterized by strong vertical shear of the horizontal wind. These conditions are used to specify an environment in an x-z plane upon which a disturbance is superimposed. The appropriate physical equations are integrated forward in time to study changes in the motion, thermal and moisture fields in and around the squall line thunderstorm.
The vertical shear of the horizontal environmental wind is varied from one experiment to another with the result that broader and longer lasting cloud circulations occur in the stronger shear cases. Specific areas where three-dimensional effects must be important are discussed from an examination of variable fields during periods when the system undergoes a lessening in intensity. It is found that the system, rather than reaching a quasi-steady state, undergoes a series of developments (three or four during a 100-min period) as measured by the time variation of maximum updraft speed, downdraft speed, and rainwater mixing ratio. However, the system structure during the intense stage of each development is basically the same as that during the other developments, and strongly resembles the structure envisaged in qualitative physical models suggested in the past: 1) the updraft and downdraft exist side by side, the updraft possessing an upshear tilt from the vertical through the lower half of the troposphere; 2) rain produced in the updraft falls into the downdraft, strengthening or maintaining the downdraft due to its own weight and through negative buoyancy produced by evaporation; and 3) maintenance of the downdraft results in a strongly convergent region in lower levels downshear from the system and a tendency toward updraft maintenance or redevelopment. The implication is that the squall line thunderstorm, once initiated, maintains itself by interaction with its synoptic environment as long as it remains within an environment containing convectively unstable air whose motion is characterized by moderate-to-strong vertical shear.
Abstract
The structure and mechanism for maintenance of the Great Plains squall line thunderstorm are studied through formulation of a two-dimensional, time-dependent numerical model. The environmental conditions known to be favorable for squall line development and maintenance include a convectively unstable air mass whose motion is characterized by strong vertical shear of the horizontal wind. These conditions are used to specify an environment in an x-z plane upon which a disturbance is superimposed. The appropriate physical equations are integrated forward in time to study changes in the motion, thermal and moisture fields in and around the squall line thunderstorm.
The vertical shear of the horizontal environmental wind is varied from one experiment to another with the result that broader and longer lasting cloud circulations occur in the stronger shear cases. Specific areas where three-dimensional effects must be important are discussed from an examination of variable fields during periods when the system undergoes a lessening in intensity. It is found that the system, rather than reaching a quasi-steady state, undergoes a series of developments (three or four during a 100-min period) as measured by the time variation of maximum updraft speed, downdraft speed, and rainwater mixing ratio. However, the system structure during the intense stage of each development is basically the same as that during the other developments, and strongly resembles the structure envisaged in qualitative physical models suggested in the past: 1) the updraft and downdraft exist side by side, the updraft possessing an upshear tilt from the vertical through the lower half of the troposphere; 2) rain produced in the updraft falls into the downdraft, strengthening or maintaining the downdraft due to its own weight and through negative buoyancy produced by evaporation; and 3) maintenance of the downdraft results in a strongly convergent region in lower levels downshear from the system and a tendency toward updraft maintenance or redevelopment. The implication is that the squall line thunderstorm, once initiated, maintains itself by interaction with its synoptic environment as long as it remains within an environment containing convectively unstable air whose motion is characterized by moderate-to-strong vertical shear.
Abstract
A method for retrieval of pressure and buoyancy distributions in deep convection is applied to Doppler radar data collected at two analysis times during the tornadic Del City (Oklahoma) thunderstorm of 20 May 1977. Change of a previous version of the technique, necessitated by application to real data, include procedures for handling irregularly-bounded volumes and missing data and new assumptions to include reflectivity data and turbulent effects in the equations. Internal consistency cheeks on the quality of retrieved pressure fields imply that the input data are generally of good quality and point out times and heights within the storm at which greater confidence can be placed in the derived fields.
In the pretornadic stage the pressure distribution includes at each level a high–low couplet across the updraft with the maximum pressure gradient generally oriented along the environmental shear vector at that altitude. These results are in agreement with predictions of linear theory. Locations of vorticity maxima and areas of updraft development are also discussed in relation to pressure distributions. The buoyancy distribution includes a good correspondence between positive buoyancy and updraft areas. An analysis of the individual terms in the buoyancy equation reveals the importance of advective and vertical pressure gradient terms over water-related and turbulence terms.
In the tornadic stage the pressure field includes a pronounced minimum at low levels coincident with the mesocyclone. An analysis of the factors influencing the pressure distribution reveals that strong low-level vertical vorticity produces this minimum. Vorticity, vertical motion, and pressure relationships in the low-level mesocyclone region tend to agree quite well with results of recent fine-scale numerical simulations as well as with the observationally-based finding of others. The low-level buoyancy field, although noisier at this stage, tends to support the line of reasoning which stress the production of horizontal vorticity as a major factor in low-level mesocyclone development.
Abstract
A method for retrieval of pressure and buoyancy distributions in deep convection is applied to Doppler radar data collected at two analysis times during the tornadic Del City (Oklahoma) thunderstorm of 20 May 1977. Change of a previous version of the technique, necessitated by application to real data, include procedures for handling irregularly-bounded volumes and missing data and new assumptions to include reflectivity data and turbulent effects in the equations. Internal consistency cheeks on the quality of retrieved pressure fields imply that the input data are generally of good quality and point out times and heights within the storm at which greater confidence can be placed in the derived fields.
In the pretornadic stage the pressure distribution includes at each level a high–low couplet across the updraft with the maximum pressure gradient generally oriented along the environmental shear vector at that altitude. These results are in agreement with predictions of linear theory. Locations of vorticity maxima and areas of updraft development are also discussed in relation to pressure distributions. The buoyancy distribution includes a good correspondence between positive buoyancy and updraft areas. An analysis of the individual terms in the buoyancy equation reveals the importance of advective and vertical pressure gradient terms over water-related and turbulence terms.
In the tornadic stage the pressure field includes a pronounced minimum at low levels coincident with the mesocyclone. An analysis of the factors influencing the pressure distribution reveals that strong low-level vertical vorticity produces this minimum. Vorticity, vertical motion, and pressure relationships in the low-level mesocyclone region tend to agree quite well with results of recent fine-scale numerical simulations as well as with the observationally-based finding of others. The low-level buoyancy field, although noisier at this stage, tends to support the line of reasoning which stress the production of horizontal vorticity as a major factor in low-level mesocyclone development.
Abstract
Mechanisms for maintenance of the strong convection along the leading edge of a broad squall line that occurred in Oklahoma on 19 May 1977 are investigated. The findings are based upon analysis of data from a surveillance radar, a surface mesonetwork, Doppler radars, proximity soundings and aircraft data, and upon the results of a two-dimensional, cloud-scale numerical simulation. The detailed results of the multiple Doppler analysis are contained in the Part I paper reporting results of research on this squall line.
It is found that at a preferred location along the squall line, an area of intense convection is maintained over a long time period. A meso-β scale organized structure, which includes an area of low pressure near the southeast edge of the intense convection and an associated area of convergence extending to the east, promotes the formation of small showers in short line segments. These showers, due to their differing motion from elements within the main line, merge with the line to the north of the mesolow, resulting in maintenance of the strong area of convection. The observed meso-β structure on this day is believed to be made possible by a deep low-level layer of weak vertical wind shear and high water-vapor content.
At other locations along the line, the numerical simulation indicates an unsteady behavior in the maintenance of squall line convection by gust frontal convergence. Perturbations in the vertical motion field are periodically initiated by either (i) enhanced convergence at the gust front resulting from diverging downdrafts at locations farther to the west, or (ii) Kelvin-Helmholtz instability produced at the gust front head. These perturbations move westward relative to the gust front above the low-level cold air and periodically invigorate the main region of updrafts located a few tens of kilometers west of the gust front. Low-level updrafts, forced by diverging surface outflow from weak downdrafts, occasionally interact with the translating perturbations to increase their amplitude. The existence of the westward-moving perturbations is tentatively substantiated by the presence of similar structures in the analyzed Doppler wind fields. Greater time resolution in Doppler data, in combination with more comprehensive surface and upper air data ahead of squall lines of this type, would aid in confirming the reported structures.
Abstract
Mechanisms for maintenance of the strong convection along the leading edge of a broad squall line that occurred in Oklahoma on 19 May 1977 are investigated. The findings are based upon analysis of data from a surveillance radar, a surface mesonetwork, Doppler radars, proximity soundings and aircraft data, and upon the results of a two-dimensional, cloud-scale numerical simulation. The detailed results of the multiple Doppler analysis are contained in the Part I paper reporting results of research on this squall line.
It is found that at a preferred location along the squall line, an area of intense convection is maintained over a long time period. A meso-β scale organized structure, which includes an area of low pressure near the southeast edge of the intense convection and an associated area of convergence extending to the east, promotes the formation of small showers in short line segments. These showers, due to their differing motion from elements within the main line, merge with the line to the north of the mesolow, resulting in maintenance of the strong area of convection. The observed meso-β structure on this day is believed to be made possible by a deep low-level layer of weak vertical wind shear and high water-vapor content.
At other locations along the line, the numerical simulation indicates an unsteady behavior in the maintenance of squall line convection by gust frontal convergence. Perturbations in the vertical motion field are periodically initiated by either (i) enhanced convergence at the gust front resulting from diverging downdrafts at locations farther to the west, or (ii) Kelvin-Helmholtz instability produced at the gust front head. These perturbations move westward relative to the gust front above the low-level cold air and periodically invigorate the main region of updrafts located a few tens of kilometers west of the gust front. Low-level updrafts, forced by diverging surface outflow from weak downdrafts, occasionally interact with the translating perturbations to increase their amplitude. The existence of the westward-moving perturbations is tentatively substantiated by the presence of similar structures in the analyzed Doppler wind fields. Greater time resolution in Doppler data, in combination with more comprehensive surface and upper air data ahead of squall lines of this type, would aid in confirming the reported structures.
Abstract
On 19 May 1977, a severe squall line formed and moved through the National Severe Storms Laboratory observing network in Oklahoma, producing heavy rain, hail, strong winds, and tornadoes. The squall line is examined at two times: 1434 and 1502 CST. Doppler analysis of part of the squall line reveals four convective cells in the line, developing cells ahead of the line, a trailing precipitation region, and a convective rainband at the western edge of the system. The updrafts within the convective cells on the leading edge tilt westward in the lower levels and eastward near the tropopause. Convective updrafts and downdrafts are fed by low-level air entering the squall line from the front. Surface network analysis and gust front penetration by an instrumented aircraft indicated strong convergence along the leading edge of one of the stronger cells in the line. Horizontal, line-relative flow perpendicular to the squall line and within the trailing precipitation area is from east to west (front to back) at all levels, weakening with height. An exception to this is an area of weak (≤3 m s−1) rear inflow into the stratiform precipitation region in the midlevels. Flow parallel to the squall line is stronger, in general, than the perpendicular flow. A composite rawinsonde analysis shows ascending motion within the troposphere over most of the squall line region. A conceptual model is developed for 19 May 1977 and is compared to conceptual models of tropical squall lines and of the 22 May 1976 Oklahoma squall line.
Abstract
On 19 May 1977, a severe squall line formed and moved through the National Severe Storms Laboratory observing network in Oklahoma, producing heavy rain, hail, strong winds, and tornadoes. The squall line is examined at two times: 1434 and 1502 CST. Doppler analysis of part of the squall line reveals four convective cells in the line, developing cells ahead of the line, a trailing precipitation region, and a convective rainband at the western edge of the system. The updrafts within the convective cells on the leading edge tilt westward in the lower levels and eastward near the tropopause. Convective updrafts and downdrafts are fed by low-level air entering the squall line from the front. Surface network analysis and gust front penetration by an instrumented aircraft indicated strong convergence along the leading edge of one of the stronger cells in the line. Horizontal, line-relative flow perpendicular to the squall line and within the trailing precipitation area is from east to west (front to back) at all levels, weakening with height. An exception to this is an area of weak (≤3 m s−1) rear inflow into the stratiform precipitation region in the midlevels. Flow parallel to the squall line is stronger, in general, than the perpendicular flow. A composite rawinsonde analysis shows ascending motion within the troposphere over most of the squall line region. A conceptual model is developed for 19 May 1977 and is compared to conceptual models of tropical squall lines and of the 22 May 1976 Oklahoma squall line.