Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Carolyn A. Reynolds x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Justin McLay
,
Craig H. Bishop
, and
Carolyn A. Reynolds

Abstract

Following ideas from the local ensemble transform Kalman filter, a local formulation of the ensemble transform (ET) analysis perturbation scheme is developed by partitioning the numerical weather prediction model domain into latitude bands or latitude–longitude blocks. In comparison with analysis perturbations from the original “global” ET formulation, analysis perturbations from the “banded” or “block” ET formulations are much more consistent with estimates of analysis error variance. Banded or block ET forecast ensembles also perform better under a variety of verification metrics than do global ET forecast ensembles. Substantial performance gains are observed for both the midlatitudes and the tropics. A local ET is scheduled to be made operational at the Fleet Numerical Meteorology and Oceanography Center.

Full access
Carolyn A. Reynolds
,
James D. Doyle
,
Richard M. Hodur
, and
Hao Jin

Abstract

As part of The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research’s (ONR’s) Tropical Cyclone Structure-08 (TCS-08) experiments, a variety of real-time products were produced at the Naval Research Laboratory during the field campaign that took place from August through early October 2008. In support of the targeted observing objective, large-scale targeting guidance was produced twice daily using singular vectors (SVs) from the Navy Operational Global Atmospheric Prediction System (NOGAPS). These SVs were optimized for fixed regions centered over Guam, Taiwan, Japan, and two regions over the North Pacific east of Japan. During high-interest periods, flow-dependent SVs were also produced. In addition, global ensemble forecasts were produced and were useful for examining the potential downstream impacts of extratropical transitions. For mesoscale models, TC forecasts were produced using a new version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) developed specifically for tropical cyclone prediction (COAMPS-TC). In addition to the COAMPS-TC forecasts, mesoscale targeted observing products were produced using the COAMPS forecast and adjoint system twice daily, centered on storms of interest, at a 40-km horizontal resolution. These products were produced with 24-, 36-, and 48-h lead times. The nonhydrostatic adjoint system used during T-PARC/TCS-08 contains an exact adjoint to the explicit microphysics. An adaptive response function region was used to target favorable areas for tropical cyclone formation and development. Results indicate that forecasts of tropical cyclones in the western Pacific are very sensitive to the initial state.

Full access
David A. Lavers
,
N. Bruce Ingleby
,
Aneesh C. Subramanian
,
David S. Richardson
,
F. Martin Ralph
,
James D. Doyle
,
Carolyn A. Reynolds
,
Ryan D. Torn
,
Mark J. Rodwell
,
Vijay Tallapragada
, and
Florian Pappenberger

Abstract

A key aim of observational campaigns is to sample atmosphere–ocean phenomena to improve understanding of these phenomena, and in turn, numerical weather prediction. In early 2018 and 2019, the Atmospheric River Reconnaissance (AR Recon) campaign released dropsondes and radiosondes into atmospheric rivers (ARs) over the northeast Pacific Ocean to collect unique observations of temperature, winds, and moisture in ARs. These narrow regions of water vapor transport in the atmosphere—like rivers in the sky—can be associated with extreme precipitation and flooding events in the midlatitudes. This study uses the dropsonde observations collected during the AR Recon campaign and the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) to evaluate forecasts of ARs. Results show that ECMWF IFS forecasts 1) were colder than observations by up to 0.6 K throughout the troposphere; 2) have a dry bias in the lower troposphere, which along with weaker winds below 950 hPa, resulted in weaker horizontal water vapor fluxes in the 950–1000-hPa layer; and 3) exhibit an underdispersiveness in the water vapor flux that largely arises from model representativeness errors associated with dropsondes. Four U.S. West Coast radiosonde sites confirm the IFS cold bias throughout winter. These issues are likely to affect the model’s hydrological cycle and hence precipitation forecasts.

Open access
Alison Cobb
,
F. Martin Ralph
,
Vijay Tallapragada
,
Anna M. Wilson
,
Christopher A. Davis
,
Luca Delle Monache
,
James D. Doyle
,
Florian Pappenberger
,
Carolyn A. Reynolds
,
Aneesh Subramanian
,
Peter G. Black
,
Forest Cannon
,
Chris Castellano
,
Jason M. Cordeira
,
Jennifer S. Haase
,
Chad Hecht
,
Brian Kawzenuk
,
David A. Lavers
,
Michael J. Murphy Jr.
,
Jack Parrish
,
Ryan Rickert
,
Jonathan J. Rutz
,
Ryan Torn
,
Xingren Wu
, and
Minghua Zheng

Abstract

Atmospheric River Reconnaissance (AR Recon) is a targeted campaign that complements other sources of observational data, forming part of a diverse observing system. AR Recon 2021 operated for ten weeks from January 13 to March 22, with 29.5 Intensive Observation Periods (IOPs), 45 flights and 1142 successful dropsondes deployed in the northeast Pacific. With the availability of two WC-130J aircraft operated by the 53rd Weather Reconnaissance Squadron (53 WRS), Air Force Reserve Command (AFRC) and one National Oceanic and Atmospheric Administration (NOAA) Aircraft Operations Center (AOC) G-IVSP aircraft, six sequences were accomplished, in which the same synoptic system was sampled over several days.

The principal aim was to gather observations to improve forecasts of landfalling atmospheric rivers on the U.S. West Coast. Sampling of other meteorological phenomena forecast to have downstream impacts over the U.S. was also considered. Alongside forecast improvement, observations were also gathered to address important scientific research questions, as part of a Research and Operations Partnership.

Targeted dropsonde observations were focused on essential atmospheric structures, primarily atmospheric rivers. Adjoint and ensemble sensitivities, mainly focusing on predictions of U.S. West Coast precipitation, provided complementary information on locations where additional observations may help to reduce the forecast uncertainty. Additionally, Airborne Radio Occultation (ARO) and tail radar were active during some flights, 30 drifting buoys were distributed, and 111 radiosondes were launched from four locations in California. Dropsonde, radiosonde and buoy data were available for assimilation in real-time into operational forecast models. Future work is planned to examine the impact of AR Recon 2021 data on model forecasts.

Full access