Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Cathy Hohenegger x
- Journal of Hydrometeorology x
- Refine by Access: All Content x
Abstract
Which processes control the mean amounts of precipitation received by tropical land and ocean? Do large-scale constraints exist on the ratio between the two? We address these questions using a conceptual box model based on water balance equations. With empirical but physically motivated parameterizations of the water balance components, we construct a set of coupled differential equations that describe the dynamical behavior of the water vapor content over land and ocean as well as the land’s soil moisture content. For a closed model configuration with one ocean and one land box, we compute equilibrium solutions across the parameter space and analyze their sensitivity to parameter choices. The precipitation ratio χ, defined as the ratio between mean land and ocean precipitation rates, quantifies the land–sea precipitation contrast. We find that χ is bounded between zero and one as long as the presence of land does not affect the relationship between water vapor path and precipitation. However, for the tested parameter values, 95% of the obtained χ values are even larger than 0.75. The sensitivity analysis reveals that χ is primarily controlled by the efficiency of atmospheric moisture transport rather than by land surface parameters. We further investigate under which conditions precipitation enhancement over land (χ > 1) would be possible. An open model configuration with an island between two ocean boxes and nonzero external advection into the domain can yield χ values larger than one, but only for a small subset of parameter choices, characterized by small land fractions and a sufficiently large moisture influx through the windward boundary.
Abstract
Which processes control the mean amounts of precipitation received by tropical land and ocean? Do large-scale constraints exist on the ratio between the two? We address these questions using a conceptual box model based on water balance equations. With empirical but physically motivated parameterizations of the water balance components, we construct a set of coupled differential equations that describe the dynamical behavior of the water vapor content over land and ocean as well as the land’s soil moisture content. For a closed model configuration with one ocean and one land box, we compute equilibrium solutions across the parameter space and analyze their sensitivity to parameter choices. The precipitation ratio χ, defined as the ratio between mean land and ocean precipitation rates, quantifies the land–sea precipitation contrast. We find that χ is bounded between zero and one as long as the presence of land does not affect the relationship between water vapor path and precipitation. However, for the tested parameter values, 95% of the obtained χ values are even larger than 0.75. The sensitivity analysis reveals that χ is primarily controlled by the efficiency of atmospheric moisture transport rather than by land surface parameters. We further investigate under which conditions precipitation enhancement over land (χ > 1) would be possible. An open model configuration with an island between two ocean boxes and nonzero external advection into the domain can yield χ values larger than one, but only for a small subset of parameter choices, characterized by small land fractions and a sufficiently large moisture influx through the windward boundary.
Abstract
A determination of the sign and magnitude of the soil moisture–precipitation feedback relies either on observations, where synoptic variability is difficult to isolate, or on model simulations, which suffer from biases mainly related to poorly resolved convection. In this study, a large-eddy simulation model with a resolution of 250 m is coupled to a land surface model and several idealized experiments mimicking the full diurnal cycle of convection are performed, starting from different spatially homogeneous soil moisture conditions. The goal is to determine under which conditions drier soils may produce more precipitation than wetter ones. The methodology of previous conceptual studies that have quantified the likelihood of convection to be triggered over wet or dry soils is followed but includes the production of precipitation. Although convection can be triggered earlier over dry soils than over wet soils under certain atmospheric conditions, total precipitation is found to always decrease over dry soils. By splitting the total precipitation into its magnitude and duration component, it is found that the magnitude strongly correlates with surface latent heat flux, hence implying a wet soil advantage. Because of this strong scaling, changes in precipitation duration caused by differences in convection triggering are not able to overcompensate for the lack of evaporation over dry soils. These results are further validated using two additional atmospheric soundings and a series of perturbed experiments that consider cloud radiative effects, as well as the effect of large-scale forcing, winds, and plants on the soil moisture–precipitation coupling.
Abstract
A determination of the sign and magnitude of the soil moisture–precipitation feedback relies either on observations, where synoptic variability is difficult to isolate, or on model simulations, which suffer from biases mainly related to poorly resolved convection. In this study, a large-eddy simulation model with a resolution of 250 m is coupled to a land surface model and several idealized experiments mimicking the full diurnal cycle of convection are performed, starting from different spatially homogeneous soil moisture conditions. The goal is to determine under which conditions drier soils may produce more precipitation than wetter ones. The methodology of previous conceptual studies that have quantified the likelihood of convection to be triggered over wet or dry soils is followed but includes the production of precipitation. Although convection can be triggered earlier over dry soils than over wet soils under certain atmospheric conditions, total precipitation is found to always decrease over dry soils. By splitting the total precipitation into its magnitude and duration component, it is found that the magnitude strongly correlates with surface latent heat flux, hence implying a wet soil advantage. Because of this strong scaling, changes in precipitation duration caused by differences in convection triggering are not able to overcompensate for the lack of evaporation over dry soils. These results are further validated using two additional atmospheric soundings and a series of perturbed experiments that consider cloud radiative effects, as well as the effect of large-scale forcing, winds, and plants on the soil moisture–precipitation coupling.