Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Charles Warner x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
David Parsons, Walter Dabberdt, Harold Cole, Terrence Hock, Charles Martin, Anne-Leslie Barrett, Erik Miller, Michael Spowart, Michael Howard, Warner Ecklund, David Carters, Kenneth Gage, and John Wilson

An Integrated Sounding System (ISS) that combines state-of-the-art remote and in situ sensors into a single transportable facility has been developed jointly by the National Center for Atmospheric Research (NCAR) and the Aeronomy Laboratory of the National Oceanic and Atmospheric Administration (NOAA/AL). The instrumentation for each ISS includes a 915-MHz wind profiler, a Radio Acoustic Sounding System (RASS), an Omega-based NAVAID sounding system, and an enhanced surface meteorological station. The general philosophy behind the ISS is that the integration of various measurement systems overcomes each system's respective limitations while taking advantage of its positive attributes. The individual observing systems within the ISS provide high-level data products to a central workstation that manages and integrates these measurements. The ISS software package performs a wide range of functions: real-time data acquisition, database support, and graphical displays; data archival and communications; and operational and posttime analysis. The first deployment of the ISS consists of six sites in the western tropical Pacific—four land-based deployments and two ship-based deployments. The sites serve the Coupled Ocean-Atmosphere Response Experiment (COARE) of the Tropical Ocean and Global Atmosphere (TOGA) program and TOGA's enhanced atmospheric monitoring effort. Examples of ISS data taken during this deployment are shown in order to demonstrate the capabilities of this new sounding system and to demonstrate the performance of these in situ and remote sensing instruments in a moist tropical environment. In particular, a strong convective outflow with a pronounced impact of the atmospheric boundary layer and heat fluxes from the ocean surface was examined with a shipboard ISS. If these strong outflows commonly occur, they may prove to be an important component of the surface energy budget of the western tropical Pacific.

Full access