Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Chiyuan Miao x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Qiaohong Sun and Chiyuan Miao
Open access
Chiyuan Miao, Qiaohong Sun, Dongxian Kong, and Qingyun Duan
Full access
Jiaojiao Gou, Chiyuan Miao, Luis Samaniego, Mu Xiao, Jingwen Wu, and Xiaoying Guo

Abstract

Reliable, spatiotemporally continuous runoff records are necessary for identifying climate change impacts and planning effective water management strategies. Existing Chinese runoff data to date have been produced from sparse, poor-quality gauge measurements at different time scales. We have developed a new, quality-controlled gridded runoff dataset, the China Natural Runoff Dataset version 1.0 (CNRD v1.0), which provides daily, monthly, and annual 0.25° runoff estimates for the period 1961–2018 over China. CNRD v1.0 was generated using the Variable Infiltration Capacity (VIC) model. A comprehensive parameter uncertainty analysis framework incorporating parameter sensitivity analysis, optimization, and regionalization with 200 natural or near-natural gauge catchments was used to train the VIC model. Overall, the results show well-calibrated parameters for most gauged catchments except arid and semiarid areas, and the skill scores present high values for all catchments. For the pseudo-/test-ungauged catchments, the model parameters estimated by the multiscale parameter regionalization technique offer the best regionalization solution. CNRD v1.0 is the first free public dataset of gridded natural runoff estimated using a comprehensive model parameter uncertainty analysis framework for China. These results indicate that CNRD v1.0 has high potential for application to long-term hydrological and climate studies in China and to improve international runoff databases for global-scale studies.

Full access
Qiaohong Sun, Chiyuan Miao, Amir AghaKouchak, Iman Mallakpour, Duoying Ji, and Qingyun Duan
Full access
Qiaohong Sun, Chiyuan Miao, Amir AghaKouchak, Iman Mallakpour, Duoying Ji, and Qingyun Duan

Abstract

Predicting the changes in teleconnection patterns and related hydroclimate extremes can provide vital information necessary to adapt to the effects of the El Niño–Southern Oscillation (ENSO). This study uses the outputs of global climate models to assess the changes in ENSO-related dry/wet patterns and the frequency of severe dry/wet events. The results show anomalous precipitation responding asymmetrically to La Niña and El Niño, indicating the teleconnections may not simply be strengthened. A “dry to drier, wet to wetter” annual anomalous precipitation pattern was projected during La Niña phases in some regions, with drier conditions over southern North America, southern South America, and southern central Asia, and wetter conditions in Southeast Asia and Australia. These results are robust, with agreement from the 26 models and from a subset of 8 models selected for their good performance in capturing observed patterns. However, we did not observe a similar strengthening of anomalous precipitation during future El Niño phases, for which the uncertainties in the projected influences are large. Under the RCP4.5 emissions scenario, 45 river basins under El Niño conditions and 39 river basins under La Niña conditions were predicted to experience an increase in the frequency of severe dry events; similarly, 59 river basins under El Niño conditions and 61 river basins under La Niña conditions were predicted to have an increase in the frequency of severe wet events, suggesting a likely increase in the risk of floods. Our results highlight the implications of changes in ENSO patterns for natural hazards, disaster management, and engineering infrastructure.

Free access