Search Results
Abstract
We present results from the first 6 years of this major U.K. government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between U.K. and Chinese climate scientists, and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modeling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over 300 peer reviewed studies generated jointly by U.K. and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skillful predictions of important aspects of Chinese climate such as East Asian summer monsoon rainfall. In addition, the development of improved modeling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real-time climate services. Participation of dozens of institutes through subprojects in this program, which is governed by the Met Office Hadley Centre, the China Meteorological Administration, and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.
Abstract
We present results from the first 6 years of this major U.K. government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between U.K. and Chinese climate scientists, and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modeling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over 300 peer reviewed studies generated jointly by U.K. and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skillful predictions of important aspects of Chinese climate such as East Asian summer monsoon rainfall. In addition, the development of improved modeling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real-time climate services. Participation of dozens of institutes through subprojects in this program, which is governed by the Met Office Hadley Centre, the China Meteorological Administration, and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.