Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Chris Snyder x
- Spontaneous Imbalance x
- Refine by Access: All Content x
Abstract
This study investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Two types of initially balanced and localized jets induced by vortex dipoles are examined here. These jets have their maximum strength either at the surface or in the middle levels of a uniformly stratified atmosphere. Within these dipoles, inertia–gravity waves with intrinsic frequencies 1–2 times the Coriolis parameter are simulated in the jet exit region. These gravity waves are nearly phase locked with the jets as shown in previous studies, suggesting spontaneous emission of the waves by the localized jets. A ray tracing technique is further employed to investigate the propagation effects of gravity waves. The ray tracing analysis reveals strong variation of wave characteristics along ray paths due to variations (particularly horizontal variations) in the propagating environment.
The dependence of wave amplitude on the jet strength (and thus on the Rossby number of the flow) is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of the stationary gravity waves in the simulations with 90-km grid spacing increases as the square of the Rossby number (Ro), when Ro falls in a small range of 0.05–0.15, but does so significantly more rapidly when a smaller grid spacing is used.
Abstract
This study investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Two types of initially balanced and localized jets induced by vortex dipoles are examined here. These jets have their maximum strength either at the surface or in the middle levels of a uniformly stratified atmosphere. Within these dipoles, inertia–gravity waves with intrinsic frequencies 1–2 times the Coriolis parameter are simulated in the jet exit region. These gravity waves are nearly phase locked with the jets as shown in previous studies, suggesting spontaneous emission of the waves by the localized jets. A ray tracing technique is further employed to investigate the propagation effects of gravity waves. The ray tracing analysis reveals strong variation of wave characteristics along ray paths due to variations (particularly horizontal variations) in the propagating environment.
The dependence of wave amplitude on the jet strength (and thus on the Rossby number of the flow) is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of the stationary gravity waves in the simulations with 90-km grid spacing increases as the square of the Rossby number (Ro), when Ro falls in a small range of 0.05–0.15, but does so significantly more rapidly when a smaller grid spacing is used.
Abstract
Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.
Abstract
Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.