Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Christian Jakob x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: All Content x
Abstract
Of great importance for the simulation of climate using general circulation models is their ability to represent accurately the vertical distribution of fractional cloud amount. In this paper, a technique to derive cloud fraction as a function of height using ground-based radar and lidar is described. The relatively unattenuated radar detects clouds and precipitation throughout the whole depth of the troposphere, whereas the lidar is able to locate cloud base accurately in the presence of rain or drizzle. From a direct comparison of 3 months of cloud fraction observed at Chilbolton, England, with the values held at the nearest grid box of the European Centre for Medium-Range Forecasts (ECMWF) model it is found that, on average, the model tends to underpredict cloud fraction below 7 km and considerably overpredict it above. The difference below 7 km can in large part be explained by the fact that the model treats snow and ice cloud separately, with snow not contributing to cloud fraction. Modifying the model cloud fraction to include the contribution from snow (already present in the form of fluxes between levels) results in much better agreement in mean cloud fraction, frequency of occurrence, and amount when present between 1 and 7 km. This, together with the fact that both the lidar and the radar echoes tend to be stronger in the regions of ice clouds that the model regards as snow, indicates that snow should not be treated as radiatively inert by the model radiation scheme. Above 7 km, the difference between the model and the observations is partly due to some of the high clouds in the model being associated with very low values of ice water content that one would not expect the radar to detect. However, removal of these from the model still leaves an apparent overestimate of cloud fraction by up to a factor of 2. A tendency in the lowest kilometer for the model to simulate cloud features up to 3 h before they are observed is also found. Overall, this study demonstrates the considerable potential of active instruments for validating the representation of clouds in models.
Abstract
Of great importance for the simulation of climate using general circulation models is their ability to represent accurately the vertical distribution of fractional cloud amount. In this paper, a technique to derive cloud fraction as a function of height using ground-based radar and lidar is described. The relatively unattenuated radar detects clouds and precipitation throughout the whole depth of the troposphere, whereas the lidar is able to locate cloud base accurately in the presence of rain or drizzle. From a direct comparison of 3 months of cloud fraction observed at Chilbolton, England, with the values held at the nearest grid box of the European Centre for Medium-Range Forecasts (ECMWF) model it is found that, on average, the model tends to underpredict cloud fraction below 7 km and considerably overpredict it above. The difference below 7 km can in large part be explained by the fact that the model treats snow and ice cloud separately, with snow not contributing to cloud fraction. Modifying the model cloud fraction to include the contribution from snow (already present in the form of fluxes between levels) results in much better agreement in mean cloud fraction, frequency of occurrence, and amount when present between 1 and 7 km. This, together with the fact that both the lidar and the radar echoes tend to be stronger in the regions of ice clouds that the model regards as snow, indicates that snow should not be treated as radiatively inert by the model radiation scheme. Above 7 km, the difference between the model and the observations is partly due to some of the high clouds in the model being associated with very low values of ice water content that one would not expect the radar to detect. However, removal of these from the model still leaves an apparent overestimate of cloud fraction by up to a factor of 2. A tendency in the lowest kilometer for the model to simulate cloud features up to 3 h before they are observed is also found. Overall, this study demonstrates the considerable potential of active instruments for validating the representation of clouds in models.
Abstract
A robust and computationally efficient object tracking algorithm is developed by incorporating various tracking techniques. Physical properties of the objects, such as brightness temperature or reflectivity, are not considered. Therefore, the algorithm is adaptable for tracking convection-like features in simulated data and remotely sensed two-dimensional images. In this algorithm, a first guess of the motion, estimated using the Fourier phase shift, is used to predict the candidates for matching. A disparity score is computed for each target–candidate pair. The disparity also incorporates overlapping criteria in the case of large objects. Then the Hungarian method is applied to identify the best pairs by minimizing the global disparity. The high-disparity pairs are unmatched, and their target and candidate are declared expired and newly initiated objects, respectively. They are tested for merger and split on the basis of their size and overlap with the other objects. The sensitivity of track duration is shown for different disparity and size thresholds. The paper highlights the algorithm’s ability to study convective life cycles using radar and simulated data over Darwin, Australia. The algorithm skillfully tracks individual convective cells (a few pixels in size) and large convective systems. The duration of tracks and cell size are found to be lognormally distributed over Darwin. The evolution of size and precipitation types of isolated convective cells is presented in the Lagrangian perspective. This algorithm is part of a vision for a modular platform [viz., TINT is not TITAN (TINT) and Tracking and Object-Based Analysis of Clouds (tobac)] that will evolve into a sustainable choice to analyze atmospheric features.
Abstract
A robust and computationally efficient object tracking algorithm is developed by incorporating various tracking techniques. Physical properties of the objects, such as brightness temperature or reflectivity, are not considered. Therefore, the algorithm is adaptable for tracking convection-like features in simulated data and remotely sensed two-dimensional images. In this algorithm, a first guess of the motion, estimated using the Fourier phase shift, is used to predict the candidates for matching. A disparity score is computed for each target–candidate pair. The disparity also incorporates overlapping criteria in the case of large objects. Then the Hungarian method is applied to identify the best pairs by minimizing the global disparity. The high-disparity pairs are unmatched, and their target and candidate are declared expired and newly initiated objects, respectively. They are tested for merger and split on the basis of their size and overlap with the other objects. The sensitivity of track duration is shown for different disparity and size thresholds. The paper highlights the algorithm’s ability to study convective life cycles using radar and simulated data over Darwin, Australia. The algorithm skillfully tracks individual convective cells (a few pixels in size) and large convective systems. The duration of tracks and cell size are found to be lognormally distributed over Darwin. The evolution of size and precipitation types of isolated convective cells is presented in the Lagrangian perspective. This algorithm is part of a vision for a modular platform [viz., TINT is not TITAN (TINT) and Tracking and Object-Based Analysis of Clouds (tobac)] that will evolve into a sustainable choice to analyze atmospheric features.
Abstract
Cumulus parameterizations in general circulation models (GCMs) frequently apply mass-flux schemes in their description of tropical convection. Mass flux constitutes the product of the fractional area covered by cumulus clouds in a model grid box and the vertical velocity within the cumulus clouds. The cumulus area fraction profiles can be derived from precipitating radar reflectivity volumes. However, the vertical velocities are difficult to observe, making the evaluation of mass-flux schemes difficult. In this paper, the authors develop and evaluate a parameterization of vertical velocity in convective (cumulus) clouds using only radar reflectivities collected by a C-band polarimetric research radar (CPOL), operating at Darwin, Australia. The parameterization is trained using vertical velocity retrievals from a dual-frequency wind profiler pair located within the field of view of CPOL. The parametric model uses two inputs derived from CPOL reflectivities: the 0-dBZ echo-top height (0-dBZ ETH) and a height-weighted column reflectivity index (Z HWT). The 0-dBZ ETH determines the shape of the vertical velocity profile, while Z HWT determines its strength. The evaluation of these parameterized vertical velocities using (i) the training dataset, (ii) an independent wind-profiler-based dataset, and (iii) 1 month of dual-Doppler vertical velocity retrievals indicates that the statistical representation of vertical velocity is reasonably accurate up to the 75th percentile. However, the parametric model underestimates the extreme velocities. The method allows for the derivation of cumulus mass flux and its variability on current GCM scales based only on reflectivities from precipitating radar, which could be valuable to modelers.
Abstract
Cumulus parameterizations in general circulation models (GCMs) frequently apply mass-flux schemes in their description of tropical convection. Mass flux constitutes the product of the fractional area covered by cumulus clouds in a model grid box and the vertical velocity within the cumulus clouds. The cumulus area fraction profiles can be derived from precipitating radar reflectivity volumes. However, the vertical velocities are difficult to observe, making the evaluation of mass-flux schemes difficult. In this paper, the authors develop and evaluate a parameterization of vertical velocity in convective (cumulus) clouds using only radar reflectivities collected by a C-band polarimetric research radar (CPOL), operating at Darwin, Australia. The parameterization is trained using vertical velocity retrievals from a dual-frequency wind profiler pair located within the field of view of CPOL. The parametric model uses two inputs derived from CPOL reflectivities: the 0-dBZ echo-top height (0-dBZ ETH) and a height-weighted column reflectivity index (Z HWT). The 0-dBZ ETH determines the shape of the vertical velocity profile, while Z HWT determines its strength. The evaluation of these parameterized vertical velocities using (i) the training dataset, (ii) an independent wind-profiler-based dataset, and (iii) 1 month of dual-Doppler vertical velocity retrievals indicates that the statistical representation of vertical velocity is reasonably accurate up to the 75th percentile. However, the parametric model underestimates the extreme velocities. The method allows for the derivation of cumulus mass flux and its variability on current GCM scales based only on reflectivities from precipitating radar, which could be valuable to modelers.