Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Christopher D. Karstens x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
Mobile mesonet sampling in the hook echo/rear-flank downdraft (RFD) region of a tornadic supercell near Bowdle, South Dakota, provided the opportunity to examine RFD thermodynamic and kinematic attributes and evolution. Focused analysis of the fifth low-level mesocyclone cycle that produced two significant tornadoes including a violent tornado, revealed four RFD internal surge (RFDIS) events. RFDISs appeared to influence tornado development, intensity, and demise by altering the thermodynamic and kinematic character of the RFD region bounding the pretornadic and tornadic circulations. Significant tornadoes developed and matured when the RFD, modulated by internal surges, was kinematically strong, only weakly negatively buoyant, and very potentially buoyant. In contrast, the demise of the Bowdle tornado was concurrent with a much cooler RFDIS that replaced more buoyant and far more potentially buoyant RFD air near the tornado. This surge also likely contributed to a displacement of the tornado from the storm updraft. Development of the first tornado and rapid intensification of the Bowdle tornado occurred when an RFDIS boundary convergence zone interacted with the pretornadic and tornadic circulations, respectively. In the latter case, a strong vertical vortex sheet along an RFDIS boundary appeared to be a near-surface cyclonic vorticity source for the tornado. A downdraft closely bounding the right flank of the developing first tornado and intensifying Bowdle tornado provided some of the inflow to these circulations. For the Bowdle tornado, parcels were also streaming toward the tornado from its immediate east and northeast. A cyclonic–anticyclonic vortex couplet was observed during a portion of each significant tornado cycle.
Abstract
Mobile mesonet sampling in the hook echo/rear-flank downdraft (RFD) region of a tornadic supercell near Bowdle, South Dakota, provided the opportunity to examine RFD thermodynamic and kinematic attributes and evolution. Focused analysis of the fifth low-level mesocyclone cycle that produced two significant tornadoes including a violent tornado, revealed four RFD internal surge (RFDIS) events. RFDISs appeared to influence tornado development, intensity, and demise by altering the thermodynamic and kinematic character of the RFD region bounding the pretornadic and tornadic circulations. Significant tornadoes developed and matured when the RFD, modulated by internal surges, was kinematically strong, only weakly negatively buoyant, and very potentially buoyant. In contrast, the demise of the Bowdle tornado was concurrent with a much cooler RFDIS that replaced more buoyant and far more potentially buoyant RFD air near the tornado. This surge also likely contributed to a displacement of the tornado from the storm updraft. Development of the first tornado and rapid intensification of the Bowdle tornado occurred when an RFDIS boundary convergence zone interacted with the pretornadic and tornadic circulations, respectively. In the latter case, a strong vertical vortex sheet along an RFDIS boundary appeared to be a near-surface cyclonic vorticity source for the tornado. A downdraft closely bounding the right flank of the developing first tornado and intensifying Bowdle tornado provided some of the inflow to these circulations. For the Bowdle tornado, parcels were also streaming toward the tornado from its immediate east and northeast. A cyclonic–anticyclonic vortex couplet was observed during a portion of each significant tornado cycle.
Abstract
Since the spring of 2002, tornadoes were sampled on nine occasions using Hardened In-Situ Tornado Pressure Recorder probes, video probes, and mobile mesonet instrumentation. This study describes pressure and, in some cases, velocity data obtained from these intercepts. In seven of these events, the intercepted tornadoes were within the radar-indicated or visually identified location of the supercell low-level mesocyclone. In the remaining two cases, the intercepted tornadoes occurred outside of this region and were located along either the rear-flank downdraft gust front or an internal rear-flank downdraft surge boundary.
The pressure traces, sometimes augmented with videography, suggest that vortex structures ranged from single-cell to two-cell, quite similar to the swirl-ratio-dependent continuum of vortex structures shown in laboratory and numerical simulations. Although near-ground tornado observations are quite rare, the number of contemporary tornado measurements now available permits a comparative range of observed pressure deficits for a wide variety of tornado sizes and intensities to be presented.
Abstract
Since the spring of 2002, tornadoes were sampled on nine occasions using Hardened In-Situ Tornado Pressure Recorder probes, video probes, and mobile mesonet instrumentation. This study describes pressure and, in some cases, velocity data obtained from these intercepts. In seven of these events, the intercepted tornadoes were within the radar-indicated or visually identified location of the supercell low-level mesocyclone. In the remaining two cases, the intercepted tornadoes occurred outside of this region and were located along either the rear-flank downdraft gust front or an internal rear-flank downdraft surge boundary.
The pressure traces, sometimes augmented with videography, suggest that vortex structures ranged from single-cell to two-cell, quite similar to the swirl-ratio-dependent continuum of vortex structures shown in laboratory and numerical simulations. Although near-ground tornado observations are quite rare, the number of contemporary tornado measurements now available permits a comparative range of observed pressure deficits for a wide variety of tornado sizes and intensities to be presented.