Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Christopher R. Williams x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
This study provides a very clear picture of the microphysics and flow field in a convective storm in the Rondonia region of Brazil through a synthesis of observations from two unique radars, measurements of the surface drop size distribution (DSD), and particle types and sizes from an aircraft penetration. The primary findings are 1) the growth of rain by the collision–coalescence–breakup (CCB) process to equilibrium drop size distributions entirely below the 0°C level; 2) the subsequent growth of larger ice particles (graupel and hail) at subfreezing temperatures; 3) the paucity of lightning activity during the former process, and the increased lightning frequency during the latter; 4) the occurrence of strong downdrafts and a downburst during the latter phase of the storm resulting from cooling by melting and evaporation; 5) the occurrence of turbulence along the main streamlines of the storm; and 6) the confirmation of the large drops reached during the CCB growth by polarimetric radar observations. These interpretations have been made possible by estimating the updraft magnitude using the “lower bound” of the Doppler spectrum at vertical incidence, and identifying the “balance level” at which particles are supported for growth. The combination of these methods shows where raindrops are supported for extended periods to allow their growth to equilibrium drop size distributions, while smaller drops ascend and large ones descend. A hypothesis worthy of pursuit is the control of the storm motion by the winds at the balance level, which is the effective precipitation generating level. Above the 0°C level the balance level separates the small ascending ice crystals from the large descending graupel and hail. Collisions between the two cause electrical charging, while gravity and the updrafts separate the charges to cause lightning. Below the 0°C level, large downward velocities (caused by the above-mentioned cooling) in excess of the terminal fall speeds of raindrops represent the downbursts, which are manifested in the surface winds.
Abstract
This study provides a very clear picture of the microphysics and flow field in a convective storm in the Rondonia region of Brazil through a synthesis of observations from two unique radars, measurements of the surface drop size distribution (DSD), and particle types and sizes from an aircraft penetration. The primary findings are 1) the growth of rain by the collision–coalescence–breakup (CCB) process to equilibrium drop size distributions entirely below the 0°C level; 2) the subsequent growth of larger ice particles (graupel and hail) at subfreezing temperatures; 3) the paucity of lightning activity during the former process, and the increased lightning frequency during the latter; 4) the occurrence of strong downdrafts and a downburst during the latter phase of the storm resulting from cooling by melting and evaporation; 5) the occurrence of turbulence along the main streamlines of the storm; and 6) the confirmation of the large drops reached during the CCB growth by polarimetric radar observations. These interpretations have been made possible by estimating the updraft magnitude using the “lower bound” of the Doppler spectrum at vertical incidence, and identifying the “balance level” at which particles are supported for growth. The combination of these methods shows where raindrops are supported for extended periods to allow their growth to equilibrium drop size distributions, while smaller drops ascend and large ones descend. A hypothesis worthy of pursuit is the control of the storm motion by the winds at the balance level, which is the effective precipitation generating level. Above the 0°C level the balance level separates the small ascending ice crystals from the large descending graupel and hail. Collisions between the two cause electrical charging, while gravity and the updrafts separate the charges to cause lightning. Below the 0°C level, large downward velocities (caused by the above-mentioned cooling) in excess of the terminal fall speeds of raindrops represent the downbursts, which are manifested in the surface winds.
Abstract
A unique set of Doppler and polarimetric radar observations were made of a microburst-producing storm in Amazonia during the Tropical Rainfall Measuring Mission (TRMM) Large-Scale Biosphere–Atmosphere (LBA) field experiment. The key features are high reflectivity (50 dBZ) and modest size hail (up to 0.8 mm) in high liquid water concentrations (>4 g m−3) at the 5-km 0°C level, melting near the 3-km level as evidenced by the Doppler spectrum width on the profiler radar (PR), by differential polarization on the S-band dual-polarized radar (S-POL), and a sharp downward acceleration from 2.8 to 1.6 km to a peak downdraft of 11 m s−1, followed by a weak microburst of 15 m s−1 at the surface. The latter features closely match the initial conditions and results of the Srivastava numerical model of a microburst produced by melting hail. It is suggested that only modest size hail in large concentrations that melt aloft can produce wet microbursts. The narrower the distribution of hail particle sizes, the more confined will be the layer of melting and negative buoyancy, and the more intense the microburst. It is hypothesized that the timing of the conditions leading to the microburst is determined by the occurrence of an updraft of proper magnitude in the layer in which supercooled water accounts for the growth of hail or graupel.
Abstract
A unique set of Doppler and polarimetric radar observations were made of a microburst-producing storm in Amazonia during the Tropical Rainfall Measuring Mission (TRMM) Large-Scale Biosphere–Atmosphere (LBA) field experiment. The key features are high reflectivity (50 dBZ) and modest size hail (up to 0.8 mm) in high liquid water concentrations (>4 g m−3) at the 5-km 0°C level, melting near the 3-km level as evidenced by the Doppler spectrum width on the profiler radar (PR), by differential polarization on the S-band dual-polarized radar (S-POL), and a sharp downward acceleration from 2.8 to 1.6 km to a peak downdraft of 11 m s−1, followed by a weak microburst of 15 m s−1 at the surface. The latter features closely match the initial conditions and results of the Srivastava numerical model of a microburst produced by melting hail. It is suggested that only modest size hail in large concentrations that melt aloft can produce wet microbursts. The narrower the distribution of hail particle sizes, the more confined will be the layer of melting and negative buoyancy, and the more intense the microburst. It is hypothesized that the timing of the conditions leading to the microburst is determined by the occurrence of an updraft of proper magnitude in the layer in which supercooled water accounts for the growth of hail or graupel.
Abstract
A 2835-MHz (10.6-cm wavelength) profiler and a 920-MHz (32.6-cm wavelength) profiler were collocated by the NOAA Aeronomy Laboratory at Garden Point, Australia, in the Tiwi Islands during the Maritime Continent Thunderstorm Experiment (MCTEX) field campaign in November and December 1995. The two profilers were directed vertically and observed vertical velocities in the clear atmosphere and hydrometeor fall velocities in deep precipitating cloud systems. In the absence of Rayleigh scatterers, the profilers obtain backscattering from the refractive index irregularities created from atmospheric turbulence acting upon refractive index gradients. This kind of scattering is commonly referred to as Bragg scattering and is only weakly dependent on the radar wavelength provided the radar half-wavelength lies within the inertial subrange of homogeneous, isotropic turbulence. In the presence of hydrometeors the profilers observe Rayleigh backscattering from hydrometeors much as weather radars do and this backscatter is very dependent upon radar wavelength, strongly favoring the shorter wavelength profiler resulting in a 20-dB enhancement of the ability of the 2835-MHz profiler to observe hydrometeors. This paper presents observations of equivalent reflectivity, Doppler velocity, and spectral width made by the collocated profilers during MCTEX. Differential reflectivity is used to diagnose the type of echo observed by the profilers in the spectral moment data. When precipitation or other particulate backscatter is dominant, the equivalent reflectivities are essentially the same for both profilers. When Bragg scattering is the dominant process, equivalent reflectivity observed by the 1-GHz profiler exceeds the equivalent reflectivity observed by the 3-GHz profiler by approximately 18 dBZe. However, when the 3-GHz profiler half-wavelength is smaller than the inner scale of turbulence, the equivalent reflectivity difference exceeds 18 dBZe, and when both Rayleigh scattering and Bragg scattering are observed simultaneously, the equivalent reflectivity difference is less than 18 dBZe. The results obtained confirm the capability of two collocated profilers to unambiguously identify the type of echo being observed and hence enable the segregation of “clear air” and precipitation echoes for studies of atmospheric dynamics and precipitating cloud systems.
Abstract
A 2835-MHz (10.6-cm wavelength) profiler and a 920-MHz (32.6-cm wavelength) profiler were collocated by the NOAA Aeronomy Laboratory at Garden Point, Australia, in the Tiwi Islands during the Maritime Continent Thunderstorm Experiment (MCTEX) field campaign in November and December 1995. The two profilers were directed vertically and observed vertical velocities in the clear atmosphere and hydrometeor fall velocities in deep precipitating cloud systems. In the absence of Rayleigh scatterers, the profilers obtain backscattering from the refractive index irregularities created from atmospheric turbulence acting upon refractive index gradients. This kind of scattering is commonly referred to as Bragg scattering and is only weakly dependent on the radar wavelength provided the radar half-wavelength lies within the inertial subrange of homogeneous, isotropic turbulence. In the presence of hydrometeors the profilers observe Rayleigh backscattering from hydrometeors much as weather radars do and this backscatter is very dependent upon radar wavelength, strongly favoring the shorter wavelength profiler resulting in a 20-dB enhancement of the ability of the 2835-MHz profiler to observe hydrometeors. This paper presents observations of equivalent reflectivity, Doppler velocity, and spectral width made by the collocated profilers during MCTEX. Differential reflectivity is used to diagnose the type of echo observed by the profilers in the spectral moment data. When precipitation or other particulate backscatter is dominant, the equivalent reflectivities are essentially the same for both profilers. When Bragg scattering is the dominant process, equivalent reflectivity observed by the 1-GHz profiler exceeds the equivalent reflectivity observed by the 3-GHz profiler by approximately 18 dBZe. However, when the 3-GHz profiler half-wavelength is smaller than the inner scale of turbulence, the equivalent reflectivity difference exceeds 18 dBZe, and when both Rayleigh scattering and Bragg scattering are observed simultaneously, the equivalent reflectivity difference is less than 18 dBZe. The results obtained confirm the capability of two collocated profilers to unambiguously identify the type of echo being observed and hence enable the segregation of “clear air” and precipitation echoes for studies of atmospheric dynamics and precipitating cloud systems.
Abstract
Cumulus parameterizations in weather and climate models frequently apply mass-flux schemes in their description of tropical convection. Mass flux constitutes the product of the fractional area covered by convection in a model grid box and the vertical velocity in cumulus clouds. However, vertical velocities are difficult to observe on GCM scales, making the evaluation of mass-flux schemes difficult. Here, the authors combine high-temporal-resolution observations of in-cloud vertical velocities derived from a pair of wind profilers over two wet seasons at Darwin with physical properties of precipitating clouds [cloud-top heights (CTH), convective–stratiform classification] derived from the Darwin C-band polarimetric radar to provide estimates of cumulus mass flux and its constituents. The length of this dataset allows for investigations of the contributions from different cumulus cloud types—namely, congestus, deep, and overshooting convection—to the overall mass flux and of the influence of large-scale conditions on mass flux. The authors found that mass flux was dominated by updrafts and, in particular, the updraft area fraction, with updraft vertical velocity playing a secondary role. The updraft vertical velocities peaked above 10 km where both the updraft area fractions and air densities were small, resulting in a marginal effect on mass-flux values. Downdraft area fractions are much smaller and velocities are much weaker than those in updrafts. The area fraction responded strongly to changes in midlevel large-scale vertical motion and convective inhibition (CIN). In contrast, changes in the lower-tropospheric relative humidity and convective available potential energy (CAPE) strongly modulate in-cloud vertical velocities but have moderate impacts on area fractions. Although average mass flux is found to increase with increasing CTH, it is the environmental conditions that seem to dictate the magnitude of mass flux produced by convection through a combination of effects on area fraction and velocity.
Abstract
Cumulus parameterizations in weather and climate models frequently apply mass-flux schemes in their description of tropical convection. Mass flux constitutes the product of the fractional area covered by convection in a model grid box and the vertical velocity in cumulus clouds. However, vertical velocities are difficult to observe on GCM scales, making the evaluation of mass-flux schemes difficult. Here, the authors combine high-temporal-resolution observations of in-cloud vertical velocities derived from a pair of wind profilers over two wet seasons at Darwin with physical properties of precipitating clouds [cloud-top heights (CTH), convective–stratiform classification] derived from the Darwin C-band polarimetric radar to provide estimates of cumulus mass flux and its constituents. The length of this dataset allows for investigations of the contributions from different cumulus cloud types—namely, congestus, deep, and overshooting convection—to the overall mass flux and of the influence of large-scale conditions on mass flux. The authors found that mass flux was dominated by updrafts and, in particular, the updraft area fraction, with updraft vertical velocity playing a secondary role. The updraft vertical velocities peaked above 10 km where both the updraft area fractions and air densities were small, resulting in a marginal effect on mass-flux values. Downdraft area fractions are much smaller and velocities are much weaker than those in updrafts. The area fraction responded strongly to changes in midlevel large-scale vertical motion and convective inhibition (CIN). In contrast, changes in the lower-tropospheric relative humidity and convective available potential energy (CAPE) strongly modulate in-cloud vertical velocities but have moderate impacts on area fractions. Although average mass flux is found to increase with increasing CTH, it is the environmental conditions that seem to dictate the magnitude of mass flux produced by convection through a combination of effects on area fraction and velocity.
Abstract
Observational studies have shown the link between convectively coupled Kelvin waves (CCKWs) and eastward-propagating rainfall anomalies. We explore the mechanisms in which CCKWs modulate the propagation of precipitation from west to east over equatorial Africa. We examine a multiyear state-of-the-art Africa-wide climate simulation from a convection-permitting model (CP4A) along with a parameterized global driving-model simulation (G25) and evaluate both against observations (TRMM) and ERA-Interim (ERA-I), with a focus on precipitation and Kelvin wave activity. We show that the two important related processes through which CCKWs influence the propagation of convection and precipitation from west to east across equatorial Africa are 1) low-level westerly wind anomalies that lead to increased low-level convergence, and 2) westerly moisture flux anomalies that amplify the lower- to midtropospheric specific humidity. We identify Kelvin wave activity using zonal wind and geopotential height. Using lagged composite analysis, we show that modeled precipitation over equatorial Africa can capture the eastward-propagating precipitation signal that is associated with CCKWs. Composite analysis on strong (high-amplitude) CCKWs shows that both CP4A and G25 capture the connection between the eastward-propagating precipitation anomalies and CCKWs. In comparison to TRMM, however, the precipitation signal is weaker in G25, while CP4A has a more realistic signal. Results show that both CP4A and G25 generally simulate the key horizontal structure of CCKWs, with anomalous low-level westerlies in phase with positive precipitation anomalies. These findings suggest that for operational forecasting, it is important to monitor the day-to-day Kelvin wave activity across equatorial Africa.
Abstract
Observational studies have shown the link between convectively coupled Kelvin waves (CCKWs) and eastward-propagating rainfall anomalies. We explore the mechanisms in which CCKWs modulate the propagation of precipitation from west to east over equatorial Africa. We examine a multiyear state-of-the-art Africa-wide climate simulation from a convection-permitting model (CP4A) along with a parameterized global driving-model simulation (G25) and evaluate both against observations (TRMM) and ERA-Interim (ERA-I), with a focus on precipitation and Kelvin wave activity. We show that the two important related processes through which CCKWs influence the propagation of convection and precipitation from west to east across equatorial Africa are 1) low-level westerly wind anomalies that lead to increased low-level convergence, and 2) westerly moisture flux anomalies that amplify the lower- to midtropospheric specific humidity. We identify Kelvin wave activity using zonal wind and geopotential height. Using lagged composite analysis, we show that modeled precipitation over equatorial Africa can capture the eastward-propagating precipitation signal that is associated with CCKWs. Composite analysis on strong (high-amplitude) CCKWs shows that both CP4A and G25 capture the connection between the eastward-propagating precipitation anomalies and CCKWs. In comparison to TRMM, however, the precipitation signal is weaker in G25, while CP4A has a more realistic signal. Results show that both CP4A and G25 generally simulate the key horizontal structure of CCKWs, with anomalous low-level westerlies in phase with positive precipitation anomalies. These findings suggest that for operational forecasting, it is important to monitor the day-to-day Kelvin wave activity across equatorial Africa.