Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Christopher R. Williams x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
In support of the 2004 North American Monsoon Experiment (NAME) field campaign, NOAA established and maintained a field site about 100 km north of Mazatlán, Mexico, consisting of wind profilers, precipitation profilers, surface upward–downward-looking radiometers, and a 10-m meteorological tower to observe the environment within the North American monsoon. Three objectives of this NOAA project are discussed in this paper: 1) to observe the vertical structure of precipitating cloud systems as they passed over the NOAA profiler site, 2) to estimate the vertical air motion and the raindrop size distribution from near the surface to just below the melting layer, and 3) to better understand the microphysical processes associated with stratiform rain containing well-defined radar bright bands.
To provide a climatological context for the profiler observations at the field site, the profiler reflectivity distributions were compared with Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity distributions from the 2004 season over the NAME domain as well as from the 1998–2005 seasons. This analysis places the NAME 2004 observations into the context of other monsoon seasons. It also provides a basis for evaluating the representativeness of the structure of the precipitation systems sampled at this location. The number of rain events observed by the TRMM PR is dependent on geography; the land region, which includes portions of the Sierra Madre Occidental, has more events than the coast and gulf regions. Conversely, from this study it is found that the frequencies of occurrence of stratiform rain and reflectivity profiles with radar bright bands are mostly independent of region. The analysis also revealed that the reflectivity distribution at each height has more year-to-year variability than region-to-region variability. These findings suggest that in cases with a well-defined bright band, the vertical profile of the reflectivity relative to the height of the bright band is similar over the gulf, coast, and land regions.
Abstract
In support of the 2004 North American Monsoon Experiment (NAME) field campaign, NOAA established and maintained a field site about 100 km north of Mazatlán, Mexico, consisting of wind profilers, precipitation profilers, surface upward–downward-looking radiometers, and a 10-m meteorological tower to observe the environment within the North American monsoon. Three objectives of this NOAA project are discussed in this paper: 1) to observe the vertical structure of precipitating cloud systems as they passed over the NOAA profiler site, 2) to estimate the vertical air motion and the raindrop size distribution from near the surface to just below the melting layer, and 3) to better understand the microphysical processes associated with stratiform rain containing well-defined radar bright bands.
To provide a climatological context for the profiler observations at the field site, the profiler reflectivity distributions were compared with Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity distributions from the 2004 season over the NAME domain as well as from the 1998–2005 seasons. This analysis places the NAME 2004 observations into the context of other monsoon seasons. It also provides a basis for evaluating the representativeness of the structure of the precipitation systems sampled at this location. The number of rain events observed by the TRMM PR is dependent on geography; the land region, which includes portions of the Sierra Madre Occidental, has more events than the coast and gulf regions. Conversely, from this study it is found that the frequencies of occurrence of stratiform rain and reflectivity profiles with radar bright bands are mostly independent of region. The analysis also revealed that the reflectivity distribution at each height has more year-to-year variability than region-to-region variability. These findings suggest that in cases with a well-defined bright band, the vertical profile of the reflectivity relative to the height of the bright band is similar over the gulf, coast, and land regions.
Abstract
Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.
Abstract
Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.