Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Christopher Velden x
  • Tropical Cyclone Intensity Experiment (TCI) x
  • Refine by Access: All Content x
Clear All Modify Search
Shixuan Zhang, Zhaoxia Pu, and Christopher Velden

Abstract

The impacts of enhanced satellite-derived atmospheric motion vectors (AMVs) on the numerical prediction of intensity changes during Hurricanes Gonzalo (2014) and Joaquin (2015) are examined. Enhanced AMVs benefit from special data-processing strategies and are examined for impact on model forecasts via assimilation experiments by employing the National Centers for Environmental Prediction (NCEP) operational Hurricane Weather Research and Forecasting (HWRF) Model using a Gridpoint Statistical Interpolation analysis system (GSI)-based ensemble–variational hybrid system. Two different data assimilation (DA) configurations, one with and one without the use of vortex initialization (VI), are compared. It is found that the assimilation of enhanced AMVs can improve the HWRF track and intensity forecasts of Gonzalo and Joaquin during their intensity change phases. The degree of data impact depends on the DA configuration used. Overall, assimilation of enhanced AMVs in the innermost domain (e.g., storm inner-core region and its immediate vicinity) outperforms other DA configurations, both with and without VI, as it results in better track and intensity forecasts. Compared to the experiment with VI, assimilation of enhanced AMVs without VI reveals more notable data impact on the forecasts of Hurricane Gonzalo, as the VI before DA alters the first guess and reduces the actual number of AMV observations assimilated into the DA system. Even with VI, assimilation of enhanced AMVs in the inner-core region can at least partially mitigate the negative effect of VI on the intensity forecast of Hurricane Gonzalo and alleviate the unrealistic vortex weakening in the simulation by removing unrealistic outflow structure and unfavorable thermodynamic conditions, thus leading to improved intensity forecasts.

Full access
Russell L. Elsberry, Eric A. Hendricks, Christopher S. Velden, Michael M. Bell, Melinda Peng, Eleanor Casas, and Qingyun Zhao

Abstract

A dynamic initialization assimilation scheme is demonstrated utilizing rapid-scan atmospheric motion vectors (AMVs) at 15-min intervals to simulate the real-time capability that now exists from the new generation of geostationary meteorological satellites. The impacts of these AMVs are validated with special Tropical Cyclone Intensity Experiment (TCI-15) datasets during 1200–1800 UTC 4 October leading up to a NASA WB-57 eyewall crossing of Hurricane Joaquin. Incorporating the AMV fields in the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) COAMPS Dynamic Initialization (SCDI) means there are 30 and 90 time steps on the 15- and 5-km grids, respectively, during which the mass fields are adjusted to these AMV-based wind increments during each 15-min assimilation period. The SCDI analysis of the three-dimensional vortex structure of Joaquin at 1800 UTC 4 October closely replicates the vortex tilt analyzed from the High-Definition Sounding System (HDSS) dropwindsondes. Vertical wind shears based on the AMVs at 15-min intervals are well correlated with the extreme rapid decay, an interruption of that rapid decay, and the subsequent period of constant intensity of Joaquin. Utilizing the SCDI analysis as the initial conditions for two versions of the COAMPS-TC model results in an accurate 72-h prediction of the interruption of the rapid decay and the period of constant intensity. Upscaling a similar SCDI analysis based on the 15-min interval AMVs provides a more realistic intensity and structure of Tropical Storm Joaquin for the initial conditions of the Navy Global Environmental Model (NAVGEM) than the synthetic TC vortex used operationally. This demonstration for a single 6-h period of AMVs indicates the potential for substantial impacts when an end-to-end cycling version is developed.

Full access
Eric A. Hendricks, Russell L. Elsberry, Christopher S. Velden, Adam C. Jorgensen, Mary S. Jordan, and Robert L. Creasey

Abstract

The objective in this study is to demonstrate how two unique datasets from the Tropical Cyclone Intensity (TCI-15) field experiment can be used to diagnose the environmental and internal factors contributing to the interruption of the rapid decay of Hurricane Joaquin (2015) and then a subsequent 30-h period of constant intensity. A special CIMSS vertical wind shear (VWS) dataset reprocessed at 15-min intervals provides a more precise documentation of the large (~15 m s−1) VWS throughout most of the rapid decay period, and then the timing of a rapid decrease in VWS to moderate (~8 m s−1) values prior to, and following, the rapid decay period. During this period, the VWS was moderate because Joaquin was between large VWSs to the north and near-zero VWSs to the south, which is considered to be a key factor in how Joaquin was able to be sustained at hurricane intensity even though it was moving poleward over colder water. A unique dataset of High Definition Sounding System (HDSS) dropwindsondes deployed from the NASA WB-57 during the TCI-15 field experiment is utilized to calculate zero-wind centers during Joaquin center overpasses that reveal for the first time the vortex tilt structure through the entire troposphere. The HDSS datasets are also utilized to calculate the inertial stability profiles and the inner-core potential temperature anomalies in the vertical. Deeper lower-tropospheric layers of near-zero vortex tilt are correlated with stronger storm intensities, and upper-tropospheric layers with large vortex tilts due to large VWSs are correlated with weaker storm intensities.

Full access
James D. Doyle, Jonathan R. Moskaitis, Joel W. Feldmeier, Ronald J. Ferek, Mark Beaubien, Michael M. Bell, Daniel L. Cecil, Robert L. Creasey, Patrick Duran, Russell L. Elsberry, William A. Komaromi, John Molinari, David R. Ryglicki, Daniel P. Stern, Christopher S. Velden, Xuguang Wang, Todd Allen, Bradford S. Barrett, Peter G. Black, Jason P. Dunion, Kerry A. Emanuel, Patrick A. Harr, Lee Harrison, Eric A. Hendricks, Derrick Herndon, William Q. Jeffries, Sharanya J. Majumdar, James A. Moore, Zhaoxia Pu, Robert F. Rogers, Elizabeth R. Sanabia, Gregory J. Tripoli, and Da-Lin Zhang

Abstract

Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.

Open access