Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Christopher W. Fairall x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Overlaying the cool southeast Pacific Ocean is the most persistent subtropical stratocumulus cloud deck in the world. It produces a profound affect on tropical climate by shading the underlying ocean and radiatively cooling and stirring up turbulence in the atmosphere. In October 2001, the East Pacific Investigation of Climate undertook an exploratory cruise from the Galapagos Islands to Chile. The cruise gathered an unprecedented dataset, integrating radiosonde, surface, cloud remote sensing, aerosol, and ocean measurements. Scientific objectives included measuring the vertical structure of the ABL in this region, understanding what physical processes are determining the stratocumulus cloud albedo, and understanding the fluxes of heat and water that couple the atmosphere and ocean in this region.
An unexpectedly well-mixed stratocumulus-capped boundary layer as a result of a strong inversion was encountered throughout. A strong diurnal cycle was observed, with thicker clouds and substantial drizzle (mainly evaporating above the sea surface) during the late night and early morning. This was driven in part by local diabatic processes, and was reinforced by a surprisingly pronounced diurnal cycle of vertical motion. The vertical motion appears to be an inertia-gravity wave driven by daytime heating over South America that propagates over 1000 km offshore. Much more nocturnal drizzle and pronounced mesoscale cellularity were observed in “clean” conditions when cloud droplet concentrations and aerosol concentrations were low. Entrainment of dry, warm air is inferred to be the primary regulator of cloud thickness in this region, but drizzle also appears to have a large indirect impact by inhibiting and changing the spatial organization of turbulence.
Overlaying the cool southeast Pacific Ocean is the most persistent subtropical stratocumulus cloud deck in the world. It produces a profound affect on tropical climate by shading the underlying ocean and radiatively cooling and stirring up turbulence in the atmosphere. In October 2001, the East Pacific Investigation of Climate undertook an exploratory cruise from the Galapagos Islands to Chile. The cruise gathered an unprecedented dataset, integrating radiosonde, surface, cloud remote sensing, aerosol, and ocean measurements. Scientific objectives included measuring the vertical structure of the ABL in this region, understanding what physical processes are determining the stratocumulus cloud albedo, and understanding the fluxes of heat and water that couple the atmosphere and ocean in this region.
An unexpectedly well-mixed stratocumulus-capped boundary layer as a result of a strong inversion was encountered throughout. A strong diurnal cycle was observed, with thicker clouds and substantial drizzle (mainly evaporating above the sea surface) during the late night and early morning. This was driven in part by local diabatic processes, and was reinforced by a surprisingly pronounced diurnal cycle of vertical motion. The vertical motion appears to be an inertia-gravity wave driven by daytime heating over South America that propagates over 1000 km offshore. Much more nocturnal drizzle and pronounced mesoscale cellularity were observed in “clean” conditions when cloud droplet concentrations and aerosol concentrations were low. Entrainment of dry, warm air is inferred to be the primary regulator of cloud thickness in this region, but drizzle also appears to have a large indirect impact by inhibiting and changing the spatial organization of turbulence.
The life cycles of three Madden–Julian oscillation (MJO) events were observed over the Indian Ocean as part of the Dynamics of the MJO (DYNAMO) experiment. During November 2011 near 0°, 80°E, the site of the research vessel Roger Revelle, the authors observed intense multiscale interactions within an MJO convective envelope, including exchanges between synoptic, meso, convective, and turbulence scales in both atmosphere and ocean and complicated by a developing tropical cyclone. Embedded within the MJO event, two bursts of sustained westerly wind (>10 m s−1; 0–8-km height) and enhanced precipitation passed over the ship, each propagating eastward as convectively coupled Kelvin waves at an average speed of 8.6 m s−1. The ocean response was rapid, energetic, and complex. The Yoshida–Wyrtki jet at the equator accelerated from less than 0.5 m s−1 to more than 1.5 m s−1 in 2 days. This doubled the eastward transport along the ocean's equatorial waveguide. Oceanic (subsurface) turbulent heat fluxes were comparable to atmospheric surface fluxes, thus playing a comparable role in cooling the sea surface. The sustained eastward surface jet continued to energize shear-driven entrainment at its base (near 100-m depth) after the MJO wind bursts subsided, thereby further modifying sea surface temperature for a period of several weeks after the storms had passed.
The life cycles of three Madden–Julian oscillation (MJO) events were observed over the Indian Ocean as part of the Dynamics of the MJO (DYNAMO) experiment. During November 2011 near 0°, 80°E, the site of the research vessel Roger Revelle, the authors observed intense multiscale interactions within an MJO convective envelope, including exchanges between synoptic, meso, convective, and turbulence scales in both atmosphere and ocean and complicated by a developing tropical cyclone. Embedded within the MJO event, two bursts of sustained westerly wind (>10 m s−1; 0–8-km height) and enhanced precipitation passed over the ship, each propagating eastward as convectively coupled Kelvin waves at an average speed of 8.6 m s−1. The ocean response was rapid, energetic, and complex. The Yoshida–Wyrtki jet at the equator accelerated from less than 0.5 m s−1 to more than 1.5 m s−1 in 2 days. This doubled the eastward transport along the ocean's equatorial waveguide. Oceanic (subsurface) turbulent heat fluxes were comparable to atmospheric surface fluxes, thus playing a comparable role in cooling the sea surface. The sustained eastward surface jet continued to energize shear-driven entrainment at its base (near 100-m depth) after the MJO wind bursts subsided, thereby further modifying sea surface temperature for a period of several weeks after the storms had passed.
Twelve national research organizations joined forces on a 30-day, 6800 n mi survey of the Central and Tropical Western Pacific on NOAA's Research Vessel Discoverer. The Combined Sensor Program (CSP), which began in American Samoa on 14 March 1996, visited Manus Island, Papua New Guinea, and ended in Hawaii on 13 April, used a unique combination of in situ, satellite, and remote sensors to better understand relationships between atmospheric and oceanic variables that affect radiative balance in this climatically important region. Besides continuously measuring both shortwave and longwave radiative fluxes, CSP instruments also measured most other factors affecting the radiative balance, including profiles of clouds (lidar and radar), aerosols (in situ and lidar), moisture (balloons, lidar, and radiometers), and sea surface temperature (thermometers and Fourier Transform Infrared Radiometers). Surface fluxes of heat, momentum, and moisture were also measured continuously. The Department of Energy's Atmospheric Radiation Measurement Program used the mission to validate similar measurements made at their CART site on Manus Island and to investigate the effect (if any) of large nearby landmasses on the island-based measurements.
Twelve national research organizations joined forces on a 30-day, 6800 n mi survey of the Central and Tropical Western Pacific on NOAA's Research Vessel Discoverer. The Combined Sensor Program (CSP), which began in American Samoa on 14 March 1996, visited Manus Island, Papua New Guinea, and ended in Hawaii on 13 April, used a unique combination of in situ, satellite, and remote sensors to better understand relationships between atmospheric and oceanic variables that affect radiative balance in this climatically important region. Besides continuously measuring both shortwave and longwave radiative fluxes, CSP instruments also measured most other factors affecting the radiative balance, including profiles of clouds (lidar and radar), aerosols (in situ and lidar), moisture (balloons, lidar, and radiometers), and sea surface temperature (thermometers and Fourier Transform Infrared Radiometers). Surface fluxes of heat, momentum, and moisture were also measured continuously. The Department of Energy's Atmospheric Radiation Measurement Program used the mission to validate similar measurements made at their CART site on Manus Island and to investigate the effect (if any) of large nearby landmasses on the island-based measurements.