Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Clément Guilloteau x
  • 12th International Precipitation Conference (IPC12) x
  • Refine by Access: All Content x
Clear All Modify Search
Clément Guilloteau and Efi Foufoula-Georgiou


The quantitative estimation of precipitation from orbiting passive microwave imagers has been performed for more than 30 years. The development of retrieval methods consists of establishing physical or statistical relationships between the brightness temperatures (TBs) measured at frequencies between 5 and 200 GHz and precipitation. Until now, these relationships have essentially been established at the “pixel” level, associating the average precipitation rate inside a predefined area (the pixel) to the collocated multispectral radiometric measurement. This approach considers each pixel as an independent realization of a process and ignores the fact that precipitation is a dynamic variable with rich multiscale spatial and temporal organization. Here we propose to look beyond the pixel values of the TBs and show that useful information for precipitation retrieval can be derived from the variations of the observed TBs in a spatial neighborhood around the pixel of interest. We also show that considering neighboring information allows us to better handle the complex observation geometry of conical-scanning microwave imagers, involving frequency-dependent beamwidths, overlapping fields of view, and large Earth incidence angles. Using spatial convolution filters, we compute “nonlocal” radiometric parameters sensitive to spatial patterns and scale-dependent structures of the TB fields, which are the “geometric signatures” of specific precipitation structures such as convective cells. We demonstrate that using nonlocal radiometric parameters to enrich the spectral information associated to each pixel allows for reduced retrieval uncertainty (reduction of 6%–11% of the mean absolute retrieval error) in a simple k-nearest neighbors retrieval scheme.

Open access
Clement Guilloteau, Efi Foufoula-Georgiou, Pierre Kirstetter, Jackson Tan, and George J. Huffman


As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space–time features are captured for use in hydrologic modeling, climate studies, and other applications. Here we propose a space–time Fourier spectral analysis and define a suite of metrics that evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space–time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space–time structure. We then evaluate five high-resolution multisatellite products (CMORPH, GSMaP, IMERG-Early, IMERG-Final, and PERSIANN-CCS) over a period of 2 years over the southeastern United States. All five satellite products show generally consistent space–time power spectral density when compared to a reference ground gauge–radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth.” The products also show low levels of spectral coherence with the gauge–radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space–time spectral coherence, the IMERG-Final product shows superior ability in resolving the space–time dynamics of precipitation down to 200-km and 4-h scales compared to the other products.

Open access
Clément Guilloteau, Antonios Mamalakis, Lawrence Vulis, Phong V. V. Le, Tryphon T. Georgiou, and Efi Foufoula-Georgiou


Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3–60-day periods) in both GPH and SST and El Niño–Southern Oscillation (ENSO) at low frequencies (2–7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics.

Open access
F. Joseph Turk, Sarah E. Ringerud, Yalei You, Andrea Camplani, Daniele Casella, Giulia Panegrossi, Paolo Sanò, Ardeshir Ebtehaj, Clement Guilloteau, Nobuyuki Utsumi, Catherine Prigent, and Christa Peters-Lidard


A fully global satellite-based precipitation estimate that can transition across the changing Earth surface and complex land/water conditions is an important capability for many hydrological applications, and for independent evaluation of the precipitation derived from weather and climate models. This capability is inherently challenging owing to the complexity of the surface geophysical properties upon which the satellite-based instruments view. To date, these satellite observations originate primarily from a variety of wide-swath passive microwave (MW) imagers and sounders. In contrast to open ocean and large water bodies, the surface emissivity contribution to passive MW measurements is much more variable for land surfaces, with varying sensitivities to near-surface precipitation. The NASA–JAXA Global Precipitation Measurement (GPM) spacecraft (2014–present) is equipped with a dual-frequency precipitation radar and a multichannel passive MW imaging radiometer specifically designed for precipitation measurement, covering substantially more land area than its predecessor Tropical Rainfall Measuring Mission (TRMM). The synergy between GPM’s instruments has guided a number of new frameworks for passive MW precipitation retrieval algorithms, whereby the information carried by the single narrow-swath precipitation radar is exploited to recover precipitation from a disparate constellation of passive MW imagers and sounders. With over 6 years of increased land surface coverage provided by GPM, new insight has been gained into the nature of the microwave surface emissivity over land and ice/snow-covered surfaces, leading to improvements in a number of physically and semiphysically based precipitation retrieval techniques that adapt to variable Earth surface conditions. In this manuscript, the workings and capabilities of several of these approaches are highlighted.

Restricted access
Efi Foufoula-Georgiou, Clement Guilloteau, Phu Nguyen, Amir Aghakouchak, Kuo-Lin Hsu, Antonio Busalacchi, F. Joseph Turk, Christa Peters-Lidard, Taikan Oki, Qingyun Duan, Witold Krajewski, Remko Uijlenhoet, Ana Barros, Pierre Kirstetter, William Logan, Terri Hogue, Hoshin Gupta, and Vincenzo Levizzani
Free access