Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Cody Converse x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Vittorio A. Gensini, Cody Converse, Walker S. Ashley, and Mateusz Taszarek


Previous studies have identified environmental characteristics that skillfully discriminate between severe and significant-severe weather events, but they have largely been limited by sample size and/or population of predictor variables. Given the heightened societal impacts of significant-severe weather, this topic was revisited using over 150 000 ERA5 reanalysis-derived vertical profiles extracted at the grid point nearest—and just prior to—tornado and hail reports during the period 1996–2019. Profiles were quality controlled and used to calculate 84 variables. Several machine learning classification algorithms were trained, tested, and cross validated on these data to assess skill in predicting severe or significant-severe reports for tornadoes and hail. Random forest classification outperformed all tested methods as measured by cross-validated critical success index scores and area under the receiver operating characteristic curve values. In addition, random forest classification was found to be more reliable than other methods and exhibited negligible frequency bias. The top three most important random forest classification variables for tornadoes were wind speed at 500 hPa, wind speed at 850 hPa, and 0–500-m storm-relative helicity. For hail, storm-relative helicity in the 3–6 km and −10° to −30°C layers, along with 0–6-km bulk wind shear, were found to be most important. A game theoretic approach was used to help explain the output of the random forest classifiers and establish critical feature thresholds for operational nowcasting and forecasting. A use case of spatial applicability of the random forest model is also presented, demonstrating the potential utility for operational forecasting. Overall, this research supports a growing number of weather and climate studies finding admirable skill in random forest classification applications.

Open access