Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Connie A. Woodhouse x
  • Refine by Access: All Content x
Clear All Modify Search
Connie A. Woodhouse

Abstract

A tree-ring-based reconstruction for 1 April snow water equivalent (SWE) is generated for the Gunnison River basin region in western Colorado. The reconstruction explains 63% of the variance in the instrumental record and extends from 1569 to 1999. When the twentieth-century part of the record is compared to the full record, the variability and extremes in the twentieth century appear representative of the long-term record. However, years of extreme SWE (low and high) and persistent low SWE events are not evenly distributed throughout the record. The twentieth century is notable for several periods that lack extreme years, and along with the nineteenth century and the second half of the eighteenth century, contains many fewer persistent low SWE events than the first half of the reconstruction. Low SWE in the western United States is associated with several circulation patterns, including the Pacific–North American (PNA) pattern and those related to El Niño–Southern Oscillation (ENSO), but the Gunnison River basin is on the edge of the area with a strong relationship to the PNA and is generally in a transitional zone with respect to regional ENSO influences. Tree-ring chronologies from Oregon and New Mexico, regions impacted by ENSO, were used as rough proxies of northwestern and southwestern U.S. winter precipitation to explore possible associations between Gunnison SWE and winter climate in these two regions over the past four centuries.

Full access
Connie A. Woodhouse
and
David Meko

Abstract

The potential of reconstructing the number of winter precipitation days from tree-rings in the southwestern United States is explored in this study. This variable, an alternative to the measure of total precipitation, has not previously been used in dendroclimatic reconstructions. However, it may be a more meaningful measure of seasonal rainfall and indicator of anomalies in atmospheric circulation features than total precipitation in areas such as the arid Southwest, where the distribution of rainfall is spatially variable. The number of precipitation days in the region encompassing southwestern New Mexico and southeastern Arizona was reconstructed for the time period 1702–1983 from a collection of tree-ring chronologies in this area. Results from this study show that tree-ring chronologies explain 71% of the variance in the regional record of the number of precipitation days. The reconstruction is statistically verified and validated with independent data. Tree-ring chronologies in this region are better able to explain variations in precipitation-day numbers than total precipitation, suggesting that other dendroclimatic studies may benefit from the use of this variable as well.

Full access
Connie A. Woodhouse
and
Bradley Udall

Abstract

The major tributary of the lower Colorado River, the Gila River, is a critical source of water for human and natural environments in the southwestern United States. Warmer and drier than the upper Colorado River basin, with less snow and a bimodal precipitation regime, the Gila River is controlled by a set of climatic conditions that is different from the controls on upper Colorado River flow. Unlike the Colorado River at Lees Ferry in Arizona, the upper Gila River and major Gila River tributaries, the Salt and Verde Rivers, do not yet reflect significant declines in annual streamflow, despite warming trends. Annual streamflow is dominated by cool-season precipitation, but the monsoon influence is discernable as well, variable across the basin and complicated by an inverse relationship with cool-season precipitation in the Salt and Verde River basins. Major multiyear streamflow droughts in these two basins have frequently been accompanied by wet monsoons, suggesting that monsoon precipitation may partially offset the impacts of a dry cool season. While statistically significant trends in annual streamflow are not evident, decreases in autumn and spring streamflow reflect warming temperatures and some decreases in spring precipitation. Because climatic controls vary with topography and the influence of the monsoon, the impact of warming on streamflow in the three subbasins is somewhat variable. However, given relationships between climate and streamflow, current trends in hydroclimate, and projections for the future, it would be prudent to expect declines in Gila River water supplies in the coming decades.

Significance Statement

This research investigates the climatic controls on the Gila River and its major tributaries, the Verde and Salt Rivers, to gain insights on how trends in climate may impact future water supply. The Gila River is the major tributary of the lower Colorado River, but, unlike the situation for the upper Colorado River, no significant decreasing trends in annual streamflow are evident despite warming temperatures. Climate–streamflow relationships are more complex in this part of the Colorado River basin, and several factors may be buffering streamflow to the impact of warming. However, given the key climatic controls on streamflow, current and emerging trends in climate, and projections for the future, declines in streamflow should be expected in the future.

Full access
Connie A. Woodhouse
,
Jeffrey J. Lukas
, and
Peter M. Brown

A sustained mid-nineteenth-century drought in the western Great Plains has been indicated by a tree-ring analysis of trees flanking the western Great Plains, and in tree-ring reconstructions of drought and streamflow for eastern Colorado and the Colorado Front Range. The development of new tree-ring chronologies for the western Great Plains, in combination with existing chronologies, now enables a more detailed assessment of the spatial and temporal characteristics of this drought. The analysis of a set of drought-sensitive tree-ring chronologies ranging from the northwestern Great Plains to central New Mexico indicates a core area of drought from south-central Wyoming to northeastern New Mexico for the years 1845–56. Drought was particularly severe in the years 1845–48, 1851, and 1854–56, contracting and affecting smaller regions in intervening years. The impact of this drought on natural ecosystems and human activities is difficult to gauge because of the paucity of historical documents and the confounding effects of land use changes occurring over the same period. However, it is probable that this drought played a role in the decimation of bison herds in the second half of the nineteenth century. Were it to occur today, this relatively small but persistent drought would have significant impacts on the Colorado Front Range metropolitan area and the agricultural regions of eastern Colorado.

Full access
Gregory J. McCabe
,
David M. Wolock
,
Gregory T. Pederson
,
Connie A. Woodhouse
, and
Stephanie McAfee

Abstract

The upper Colorado River basin (UCRB) is one of the primary sources of water for the western United States, and increasing temperatures likely will elevate the risk of reduced water supply in the basin. Although variability in water-year precipitation explains more of the variability in water-year UCRB streamflow than water-year UCRB temperature, since the late 1980s, increases in temperature in the UCRB have caused a substantial reduction in UCRB runoff efficiency (the ratio of streamflow to precipitation). These reductions in flow because of increasing temperatures are the largest documented temperature-related reductions since record keeping began. Increases in UCRB temperature over the past three decades have resulted in a mean UCRB water-year streamflow departure of −1306 million m3 (or −7% of mean water-year streamflow). Additionally, warm-season (April through September) temperature has had a larger effect on variability in water-year UCRB streamflow than the cool-season (October through March) temperature. The greater contribution of warm-season temperature, relative to cool-season temperature, to variability of UCRB flow suggests that evaporation or snowmelt, rather than changes from snow to rain during the cool season, has driven recent reductions in UCRB flow. It is expected that as warming continues, the negative effects of temperature on water-year UCRB streamflow will become more evident and problematic.

Full access
Toby R. Ault
,
Julia E. Cole
,
Jonathan T. Overpeck
,
Gregory T. Pederson
,
Scott St. George
,
Bette Otto-Bliesner
,
Connie A. Woodhouse
, and
Clara Deser

Abstract

The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). The significance of the estimates of spectral densities and β are tested against the null hypothesis that they reflect solely the effects of local (nonclimate) sources of autocorrelation at the monthly time scale. Although tree-ring-based hydroclimate reconstructions are generally consistent with this null hypothesis, values of β calculated from long moisture-sensitive chronologies (as opposed to reconstructions) and other types of hydroclimate proxies exceed null expectations. Therefore it may be argued that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal-to-multidecadal time scales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.

Full access
Gregory T. Pederson
,
Stephen T. Gray
,
Toby Ault
,
Wendy Marsh
,
Daniel B. Fagre
,
Andrew G. Bunn
,
Connie A. Woodhouse
, and
Lisa J. Graumlich

Abstract

The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ≤0°C) and changes in spring minimum temperatures that correspond with atmospheric circulation changes and surface–albedo feedbacks in March and April. Warmer spring temperatures coupled with increases in mean and variance of spring precipitation correspond strongly to earlier snowmeltout, an increased number of snow-free days, and observed changes in streamflow timing and discharge. The majority of the variability in peak and total annual snowpack and streamflow, however, is explained by season-dependent interannual-to-interdecadal changes in atmospheric circulation associated with Pacific Ocean sea surface temperatures. Over recent decades, increased spring precipitation appears to be buffering NRM total annual streamflow from what would otherwise be greater snow-related declines in hydrologic yield. Results have important implications for ecosystems, water resources, and long-lead-forecasting capabilities.

Full access
Erika K. Wise
,
Connie A. Woodhouse
,
Gregory J. McCabe
,
Gregory T. Pederson
, and
Jeannine-Marie St-Jacques

Abstract

Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

Full access
David W. Stahle
,
Edward R. Cook
,
Dorian J. Burnette
,
Max C. A. Torbenson
,
Ian M. Howard
,
Daniel Griffin
,
Jose Villanueva Diaz
,
Benjamin I. Cook
,
A. Park Williams
,
Emma Watson
,
David J. Sauchyn
,
Neil Pederson
,
Connie A. Woodhouse
,
Gregory T. Pederson
,
David Meko
,
Bethany Coulthard
, and
Christopher J. Crawford

Abstract

Cool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.

Free access
Thomas C. Peterson
,
Richard R. Heim Jr.
,
Robert Hirsch
,
Dale P. Kaiser
,
Harold Brooks
,
Noah S. Diffenbaugh
,
Randall M. Dole
,
Jason P. Giovannettone
,
Kristen Guirguis
,
Thomas R. Karl
,
Richard W. Katz
,
Kenneth Kunkel
,
Dennis Lettenmaier
,
Gregory J. McCabe
,
Christopher J. Paciorek
,
Karen R. Ryberg
,
Siegfried Schubert
,
Viviane B. S. Silva
,
Brooke C. Stewart
,
Aldo V. Vecchia
,
Gabriele Villarini
,
Russell S. Vose
,
John Walsh
,
Michael Wehner
,
David Wolock
,
Klaus Wolter
,
Connie A. Woodhouse
, and
Donald Wuebbles

Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.

Full access