Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: D. B. Stephenson x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
S. Pezzulli, D. B. Stephenson, and A. Hannachi

Abstract

Seasons are the complex nonlinear response of the physical climate system to regular annual solar forcing. There is no a priori reason why they should remain fixed/invariant from year to year, as is often assumed in climate studies when extracting the seasonal component. The widely used econometric variant of Census Method II Seasonal Adjustment Program (X-11), which allows for year-to-year variations in seasonal shape, is shown here to have some advantages for diagnosing climate variability. The X-11 procedure is applied to the monthly mean Niño-3.4 sea surface temperature (SST) index and global gridded NCEP–NCAR reanalyses of 2-m surface air temperature. The resulting seasonal component shows statistically significant interannual variations over many parts of the globe. By taking these variations in seasonality into account, it is shown that one can define less ambiguous ENSO indices. Furthermore, using the X-11 seasonal adjustment approach, it is shown that the three cold ENSO episodes after 1998 are due to an increase in amplitude of seasonality rather than being three distinct La Niña events. Globally, variations in the seasonal component represent a substantial fraction of the year-to-year variability in monthly mean temperatures. In addition, strong teleconnections can be discerned between the magnitude of seasonal variations across the globe. It might be possible to exploit such relationships to improve the skill of seasonal climate forecasts.

Full access
C. A. S. Coelho, C. A. T. Ferro, D. B. Stephenson, and D. J. Steinskog

Abstract

This study presents various statistical methods for exploring and summarizing spatial extremal properties in large gridpoint datasets. Extremal properties are inferred from the subset of gridpoint values that exceed sufficiently high, time-varying thresholds. A simple approach is presented for how to choose the thresholds so as to avoid sampling biases from nonstationary differential trends within the annual cycle. The excesses are summarized by estimating parameters of a flexible generalized Pareto model that can account for spatial and temporal variation in the excess distributions. The effect of potentially explanatory factors (e.g., ENSO) on the distribution of extremes can be easily investigated using this model. Smooth spatially pooled estimates are obtained by fitting the model over neighboring grid points while accounting for possible spatial variation across these points. Extreme value theory methods are also presented for how to investigate the temporal clustering and spatial dependency (teleconnections) of extremes. The methods are illustrated using Northern Hemisphere monthly mean gridded temperatures for June–August (JJA) summers from 1870 to 2005.

Full access
M. R. P. Sapiano, D. B. Stephenson, H. J. Grubb, and P. A. Arkin

Abstract

A physically motivated statistical model is used to diagnose variability and trends in wintertime (October–March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasigeostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount.

The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity qs has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.

Full access
C. A. S. Coelho, S. Pezzulli, M. Balmaseda, F. J. Doblas-Reyes, and D. B. Stephenson

Abstract

This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.

Full access
C. A. S. Coelho, D. B. Stephenson, M. Balmaseda, F. J. Doblas-Reyes, and G. J. van Oldenborgh

Abstract

This study proposes an objective integrated seasonal forecasting system for producing well-calibrated probabilistic rainfall forecasts for South America. The proposed system has two components: (i) an empirical model that uses Pacific and Atlantic sea surface temperature anomalies as predictors for rainfall and (ii) a multimodel system composed of three European coupled ocean–atmosphere models. Three-month lead austral summer rainfall predictions produced by the components of the system are integrated (i.e., combined and calibrated) using a Bayesian forecast assimilation procedure. The skill of empirical, coupled multimodel, and integrated forecasts obtained with forecast assimilation is assessed and compared. The simple coupled multimodel ensemble has a comparable level of skill to that obtained using a simplified empirical approach. As for most regions of the globe, seasonal forecast skill for South America is low. However, when empirical and coupled multimodel predictions are combined and calibrated using forecast assimilation, more skillful integrated forecasts are obtained than with either empirical or coupled multimodel predictions alone. Both the reliability and resolution of the forecasts have been improved by forecast assimilation in several regions of South America. The Tropics and the area of southern Brazil, Uruguay, Paraguay, and northern Argentina have been found to be the two most predictable regions of South America during the austral summer. Skillful rainfall forecasts are generally only possible during El Niño or La Niña years rather than in neutral years.

Full access
Alan J. Hewitt, Ben B. B. Booth, Chris D. Jones, Eddy S. Robertson, Andy J. Wiltshire, Philip G. Sansom, David B. Stephenson, and Stan Yip

Abstract

The inclusion of carbon cycle processes within CMIP5 Earth system models provides the opportunity to explore the relative importance of differences in scenario and climate model representation to future land and ocean carbon fluxes. A two-way analysis of variance (ANOVA) approach was used to quantify the variability owing to differences between scenarios and between climate models at different lead times. For global ocean carbon fluxes, the variance attributed to differences between representative concentration pathway scenarios exceeds the variance attributed to differences between climate models by around 2025, completely dominating by 2100. This contrasts with global land carbon fluxes, where the variance attributed to differences between climate models continues to dominate beyond 2100. This suggests that modeled processes that determine ocean fluxes are currently better constrained than those of land fluxes; thus, one can be more confident in linking different future socioeconomic pathways to consequences of ocean carbon uptake than for land carbon uptake. The contribution of internal variance is negligible for ocean fluxes and small for land fluxes, indicating that there is little dependence on the initial conditions. The apparent agreement in atmosphere–ocean carbon fluxes, globally, masks strong climate model differences at a regional level. The North Atlantic and Southern Ocean are key regions, where differences in modeled processes represent an important source of variability in projected regional fluxes.

Full access