Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: D. Baumgardner x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: All Content x
Abstract
Wind profilers are radars that operate in the VHF and UHF hands and are designed for detecting the weak echoes reflected by the optically clear atmosphere. An unexpected application of wind profilers has been the revival of an old method of estimating drop size distributions in rain from the Doppler spectrum of the received signal. Originally attempted with radars operating at microwave frequency, the method showed early promise but was seriously limited in application because of the crucial sensitivity of the estimated drop sizes to the vertical air velocity, a quantity generally unknown and, at that time, unmeasurable. Profilers have solved this problem through their ability to measure, under appropriate conditions, both air motions and drop motions. This paper compares the drop sizes measured by a UHF profiler at two altitudes in a shower with those measured simultaneously by an instrumented airplane. The agreement is satisfactory, lending support to this new application of wind profilers.
Abstract
Wind profilers are radars that operate in the VHF and UHF hands and are designed for detecting the weak echoes reflected by the optically clear atmosphere. An unexpected application of wind profilers has been the revival of an old method of estimating drop size distributions in rain from the Doppler spectrum of the received signal. Originally attempted with radars operating at microwave frequency, the method showed early promise but was seriously limited in application because of the crucial sensitivity of the estimated drop sizes to the vertical air velocity, a quantity generally unknown and, at that time, unmeasurable. Profilers have solved this problem through their ability to measure, under appropriate conditions, both air motions and drop motions. This paper compares the drop sizes measured by a UHF profiler at two altitudes in a shower with those measured simultaneously by an instrumented airplane. The agreement is satisfactory, lending support to this new application of wind profilers.
Abstract
This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.
Abstract
This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.