Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: D. Cayan x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
James D. Means
and
Daniel Cayan

Abstract

Precipitable water or integrated water vapor can be obtained from zenith travel-time delays from global positioning system (GPS) signals if the atmospheric pressure and temperature at the GPS site is known. There have been more than 10 000 GPS receivers deployed as part of geophysics research programs around the world; but, unfortunately, most of these receivers do not have collocated barometers. This paper describes a new technique to use North American Regional Reanalysis pressure, temperature, and geopotential height data to calculate station pressures and surface temperature at the GPS sites. This enables precipitable water to be calculated at those sites using archived zenith delays. The technique has been evaluated by calculating altimeter readings at aviation routine weather report (METAR) sites and comparing them with reported altimeter readings. Additionally, the precipitable water values calculated using this method have been found to agree with SuomiNet GPS precipitable water, with RMS differences of 2 mm or less, and are also generally in agreement with radiosonde measurements of precipitable water. Applications of this technique are shown and are explored for different synoptic situations, including atmospheric-river-type baroclinic storms and the North American monsoon.

Full access
A. B. White
,
M. L. Anderson
,
M. D. Dettinger
,
F. M. Ralph
,
A. Hinojosa
,
D. R. Cayan
,
R. K. Hartman
,
D. W. Reynolds
,
L. E. Johnson
,
T. L. Schneider
,
R. Cifelli
,
Z. Toth
,
S. I. Gutman
,
C. W. King
,
F. Gehrke
,
P. E. Johnston
,
C. Walls
,
D. Mann
,
D. J. Gottas
, and
T. Coleman

Abstract

During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for the water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. To improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, are required. Here, the authors describe how California is addressing their most important and costliest environmental issue—water management—in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

Full access