Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: D. E. Wolfe x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
L. L. Pan
,
E. L. Atlas
,
R. J. Salawitch
,
S. B. Honomichl
,
J. F. Bresch
,
W. J. Randel
,
E. C. Apel
,
R. S. Hornbrook
,
A. J. Weinheimer
,
D. C. Anderson
,
S. J. Andrews
,
S. Baidar
,
S. P. Beaton
,
T. L. Campos
,
L. J. Carpenter
,
D. Chen
,
B. Dix
,
V. Donets
,
S. R. Hall
,
T. F. Hanisco
,
C. R. Homeyer
,
L. G. Huey
,
J. B. Jensen
,
L. Kaser
,
D. E. Kinnison
,
T. K. Koenig
,
J.-F. Lamarque
,
C. Liu
,
J. Luo
,
Z. J. Luo
,
D. D. Montzka
,
J. M. Nicely
,
R. B. Pierce
,
D. D. Riemer
,
T. Robinson
,
P. Romashkin
,
A. Saiz-Lopez
,
S. Schauffler
,
O. Shieh
,
M. H. Stell
,
K. Ullmann
,
G. Vaughan
,
R. Volkamer
, and
G. Wolfe

Abstract

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

Full access
John T. Sullivan
,
Timothy Berkoff
,
Guillaume Gronoff
,
Travis Knepp
,
Margaret Pippin
,
Danette Allen
,
Laurence Twigg
,
Robert Swap
,
Maria Tzortziou
,
Anne M. Thompson
,
Ryan M. Stauffer
,
Glenn M. Wolfe
,
James Flynn
,
Sally E. Pusede
,
Laura M. Judd
,
William Moore
,
Barry D. Baker
,
Jay Al-Saadi
, and
Thomas J. McGee

Abstract

Coastal regions have historically represented a significant challenge for air quality investigations because of water–land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants “over land” and “over water” to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land–water interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agency’s Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

Open access
Randall M. Dole
,
J. Ryan Spackman
,
Matthew Newman
,
Gilbert P. Compo
,
Catherine A. Smith
,
Leslie M. Hartten
,
Joseph J. Barsugli
,
Robert S. Webb
,
Martin P. Hoerling
,
Robert Cifelli
,
Klaus Wolter
,
Christopher D. Barnet
,
Maria Gehne
,
Ronald Gelaro
,
George N. Kiladis
,
Scott Abbott
,
Elena Akish
,
John Albers
,
John M. Brown
,
Christopher J. Cox
,
Lisa Darby
,
Gijs de Boer
,
Barbara DeLuisi
,
Juliana Dias
,
Jason Dunion
,
Jon Eischeid
,
Christopher Fairall
,
Antonia Gambacorta
,
Brian K. Gorton
,
Andrew Hoell
,
Janet Intrieri
,
Darren Jackson
,
Paul E. Johnston
,
Richard Lataitis
,
Kelly M. Mahoney
,
Katherine McCaffrey
,
H. Alex McColl
,
Michael J. Mueller
,
Donald Murray
,
Paul J. Neiman
,
William Otto
,
Ola Persson
,
Xiao-Wei Quan
,
Imtiaz Rangwala
,
Andrea J. Ray
,
David Reynolds
,
Emily Riley Dellaripa
,
Karen Rosenlof
,
Naoko Sakaeda
,
Prashant D. Sardeshmukh
,
Laura C. Slivinski
,
Lesley Smith
,
Amy Solomon
,
Dustin Swales
,
Stefan Tulich
,
Allen White
,
Gary Wick
,
Matthew G. Winterkorn
,
Daniel E. Wolfe
, and
Robert Zamora

Abstract

Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Full access