Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: D. G. Fox x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
D. N. Williams
,
R. Ananthakrishnan
,
D. E. Bernholdt
,
S. Bharathi
,
D. Brown
,
M. Chen
,
A. L. Chervenak
,
L. Cinquini
,
R. Drach
,
I. T. Foster
,
P. Fox
,
D. Fraser
,
J. Garcia
,
S. Hankin
,
P. Jones
,
D. E. Middleton
,
J. Schwidder
,
R. Schweitzer
,
R. Schuler
,
A. Shoshani
,
F. Siebenlist
,
A. Sim
,
W. G. Strand
,
M. Su
, and
N. Wilhelmi

By leveraging current technologies to manage distributed climate data in a unified virtual environment, the Earth System Grid (ESG) project is promoting data sharing between international research centers and diverse users. In transforming these data into a collaborative community resource, ESG is changing the way global climate research is conducted.

Since ESG's production beginnings in 2004, its most notable accomplishment was to efficiently store and distribute climate simulation data of some 20 global coupled ocean-atmosphere models to the scores of scientific contributors to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC); the IPCC collective scientific achievement was recognized by the award of a 2007 Nobel Peace Prize. Other international climate stakeholders such as the North American Regional Climate Change Assessment Program (NARCCAP) and the developers of the Community Climate System Model (CCSM) and of the Climate Science Computational End Station (CCES) also have endorsed ESG technologies for disseminating data to their respective user communities. In coming years, the recently created Earth System Grid Center for Enabling Technology (ESG-CET) will extend these methods to assist the international climate community in its efforts to better understand the global climate system.

Full access
Bruce A. Wielicki
,
D. F. Young
,
M. G. Mlynczak
,
K. J. Thome
,
S. Leroy
,
J. Corliss
,
J. G. Anderson
,
C. O. Ao
,
R. Bantges
,
F. Best
,
K. Bowman
,
H. Brindley
,
J. J. Butler
,
W. Collins
,
J. A. Dykema
,
D. R. Doelling
,
D. R. Feldman
,
N. Fox
,
X. Huang
,
R. Holz
,
Y. Huang
,
Z. Jin
,
D. Jennings
,
D. G. Johnson
,
K. Jucks
,
S. Kato
,
D. B. Kirk-Davidoff
,
R. Knuteson
,
G. Kopp
,
D. P. Kratz
,
X. Liu
,
C. Lukashin
,
A. J. Mannucci
,
N. Phojanamongkolkij
,
P. Pilewskie
,
V. Ramaswamy
,
H. Revercomb
,
J. Rice
,
Y. Roberts
,
C. M. Roithmayr
,
F. Rose
,
S. Sandford
,
E. L. Shirley
,
Sr. W. L. Smith
,
B. Soden
,
P. W. Speth
,
W. Sun
,
P. C. Taylor
,
D. Tobin
, and
X. Xiong

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a “NIST [National Institute of Standards and Technology] in orbit.” CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

Full access
R. H. Moss
,
S. Avery
,
K. Baja
,
M. Burkett
,
A. M. Chischilly
,
J. Dell
,
P. A. Fleming
,
K. Geil
,
K. Jacobs
,
A. Jones
,
K. Knowlton
,
J. Koh
,
M. C. Lemos
,
J. Melillo
,
R. Pandya
,
T. C. Richmond
,
L. Scarlett
,
J. Snyder
,
M. Stults
,
A. Waple
,
J. Whitehead
,
D. Zarrilli
,
J. Fox
,
A. Ganguly
,
L. Joppa
,
S. Julius
,
P. Kirshen
,
R. Kreutter
,
A. McGovern
,
R. Meyer
,
J. Neumann
,
W. Solecki
,
J. Smith
,
P. Tissot
,
G. Yohe
, and
R. Zimmerman
Full access
Gregory C. Johnson
,
Rick Lumpkin
,
Tim Boyer
,
Francis Bringas
,
Ivona Cetinić
,
Don P. Chambers
,
Lijing Cheng
,
Shenfu Dong
,
Richard A. Feely
,
Baylor Fox-Kemper
,
Eleanor Frajka-Williams
,
Bryan A. Franz
,
Yao Fu
,
Meng Gao
,
Jay Garg
,
John Gilson
,
Gustavo Goni
,
Benjamin D. Hamlington
,
Helene T. Hewitt
,
William R. Hobbs
,
Zeng-Zhen Hu
,
Boyin Huang
,
Svetlana Jevrejeva
,
William E. Johns
,
Sato Katsunari
,
John J. Kennedy
,
Marion Kersalé
,
Rachel E. Killick
,
Eric Leuliette
,
Ricardo Locarnini
,
M. Susan Lozier
,
John M. Lyman
,
Mark A. Merrifield
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
R. Steven Nerem
,
Dirk Notz
,
Renellys C. Perez
,
Sarah G. Purkey
,
Darren Rayner
,
James Reagan
,
Claudia Schmid
,
David A. Siegel
,
David A. Smeed
,
Paul W. Stackhouse
,
William Sweet
,
Philip R. Thompson
,
Denis L. Volkov
,
Rik Wanninkhof
,
Robert A. Weller
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
Josh K. Willis
,
Lisan Yu
, and
Huai-Min Zhang
Free access